• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Khoảng cách và góc trong không gian

Cho hình hộp chữ nhật \(ABCD.A’B’C’D’\) có đáy là hình vuông cạnh \(a\), cạnh bên \(AA’ = a\sqrt 3 \). Khoảng cách giữa hai đường thẳng \(BD\) và \(D’C\) bằng

Ngày 03/06/2023 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Trắc nghiệm tính khoảng cách HHKG

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có đáy là hình vuông cạnh \(a\), cạnh bên \(AA' = a\sqrt 3 \). Khoảng cách giữa hai đường thẳng \(BD\) và \(D'C\) bằng A. \(\frac{{\sqrt 7 a}}{7}\). B. \(\frac{{\sqrt {21} a}}{7}\). C. \(\frac{{\sqrt 3 a}}{7}\). D. \(\frac{{\sqrt {14} a}}{7}\). Lời giải: Gọi \(O\) là giao điểm của \(BD\) và \(AC\). Kẻ \(AH \bot … [Đọc thêm...] vềCho hình hộp chữ nhật \(ABCD.A’B’C’D’\) có đáy là hình vuông cạnh \(a\), cạnh bên \(AA’ = a\sqrt 3 \). Khoảng cách giữa hai đường thẳng \(BD\) và \(D’C\) bằng

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\), cạnh bên bằng \(a\sqrt 2 \). Độ lớn góc giữa đường thẳng \(SA\) và mặt phẳng đáy bằng

Ngày 03/06/2023 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Goc giua duong thang va mat phang

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\), cạnh bên bằng \(a\sqrt 2 \). Độ lớn góc giữa đường thẳng \(SA\) và mặt phẳng đáy bằng A. \({45^ \circ }\). B. \({75^ \circ }\). C. \({30^ \circ }\). D. \({60^ \circ }\). Lời giải: Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Vì hình chóp \(S.ABCD\) là hình chóp đều nên \(SO \bot \left( {ABCD} … [Đọc thêm...] vềCho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\), cạnh bên bằng \(a\sqrt 2 \). Độ lớn góc giữa đường thẳng \(SA\) và mặt phẳng đáy bằng

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA = a\sqrt 2 \) và vuông góc với mặt phẳng đáy. Góc giữa cạnh bên \(SC\) với mặt phẳng đáy bằng

Ngày 03/06/2023 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Goc giua duong thang va mat phang

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA = a\sqrt 2 \) và vuông góc với mặt phẳng đáy. Góc giữa cạnh bên \(SC\) với mặt phẳng đáy bằng A. 450. B. 300. C. 900. D. 600. Lờigiải Do\(SA \bot \left( {ABCD} \right) \Rightarrow \) hình chiếu vuông góc của \(SC\) lên \(\left( {ABCD} \right)\) là \(AC\) \( \Rightarrow \left( {SC,\left( … [Đọc thêm...] vềCho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA = a\sqrt 2 \) và vuông góc với mặt phẳng đáy. Góc giữa cạnh bên \(SC\) với mặt phẳng đáy bằng

Cho khối lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông cân tại B, AB = a. Biết khoảng cách từ A đến mặt phẳng \(\left( {A’BC} \right)\) bằng \(\frac{{\sqrt 6 }}{3}a\), thể tích khối lăng trụ đã cho bằng

Ngày 14/03/2023 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Khoang cach diem den mp

Cho khối lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông cân tại \(B\) , \(AB = a\) . Biết khoảng cách từ \(A\) đến mặt phẳng \(\left( {A'BC} \right)\) bằng \(\frac{{\sqrt 6 }}{3}a\) , thể tích khối lăng trụ đã cho bằng A. \(\frac{{\sqrt 2 }}{6}{a^3}\) .  B. \(\frac{{\sqrt 2 }}{2}{a^3}\) .  C. \(\sqrt 2 {a^3}\) .  D. \(\frac{{\sqrt … [Đọc thêm...] vềCho khối lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông cân tại B, AB = a. Biết khoảng cách từ A đến mặt phẳng \(\left( {A’BC} \right)\) bằng \(\frac{{\sqrt 6 }}{3}a\), thể tích khối lăng trụ đã cho bằng

Cho hình chóp đều \(S.ABCD\) có chiều cao \(a,\,\,AC = 2a\) (tham khảo hình bên). Tính khoảng cách từ điểm \(B\) đến mặt phẳng \(\left( {SCD} \right)\) .

Ngày 09/03/2023 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Khoang cach diem den mp, Khoang cach hai duong thang cheo nhau

Cho hình chóp đều \(S.ABCD\) có chiều cao \(a,\,\,AC = 2a\) (tham khảo hình bên). Tính khoảng cách từ điểm \(B\) đến mặt phẳng \(\left( {SCD} \right)\) . A. \(\frac{{\sqrt 3 }}{3}a\) .  B. \(\sqrt 2 a\) .  C. \(\frac{{2\sqrt 3 }}{3}a\) .  D. \(\frac{{\sqrt 2 }}{2}a\) . Lời giải: Chọn C - Gọi \(O = AC \cap BD\) , \(H\) là trung điểm \(CD\) … [Đọc thêm...] vềCho hình chóp đều \(S.ABCD\) có chiều cao \(a,\,\,AC = 2a\) (tham khảo hình bên). Tính khoảng cách từ điểm \(B\) đến mặt phẳng \(\left( {SCD} \right)\) .

Cho hình lăng trụ đứng \(ABC. {A_1}{B_1}{C_1}\) \(A{A_1} = 2a\sqrt 5 \)và\(\widehat {BAC} = {120^\circ }\) có\(AB = a\), \(AC = 2a\),Gọi\(I\),\(K\) lần lượt là trung điểm của các cạnh\(B{B_1}\),\(C{C_1}\).Tính khoảng cách từ điểm\(I\)đến mặt phẳng\(\left( {{A_1}BK} \right)\)

Ngày 15/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình lăng trụ đứng\(AB C. {A_1}{B_1}{C_1}\) \(A{A_1} = 2a\sqrt 5 \)và\(\widehat {BAC} = {120^\circ }\) có\(AB = a\), \(AC = 2a\),Gọi\(I\),\(K\) lần lượt là trung điểm của các cạnh\(B{B_1}\),\(C{C_1}\).Tính khoảng cách từ điểm\(I\)đến mặt phẳng\(\left( {{A_1}BK} \right)\) A. \(\frac{{a\sqrt 5 }}{3}\). B. \(a\sqrt {15} \). C. \(\frac{{a\sqrt {15} … [Đọc thêm...] về

Cho hình lăng trụ đứng \(ABC. {A_1}{B_1}{C_1}\) \(A{A_1} = 2a\sqrt 5 \)và\(\widehat {BAC} = {120^\circ }\) có\(AB = a\), \(AC = 2a\),Gọi\(I\),\(K\) lần lượt là trung điểm của các cạnh\(B{B_1}\),\(C{C_1}\).Tính khoảng cách từ điểm\(I\)đến mặt phẳng\(\left( {{A_1}BK} \right)\)

Cho hình chóp\(S.ABC\)có đáy\(ABC\)là tam giác cân,\(AB = AC = 2a\), góc\(\widehat {BAC} = {120^\circ }\). Tam giác\(SAB\)cân tại\(S\)và nằm trong mặt phẳng vuông góc với đáy, góc tạo bởi mặt phẳng\(\left( {SBC} \right)\)và mặt phẳng đáy\(\left( {ABC} \right)\)bằng\({60^\circ }\). Tính khoảng cách giữa hai đường thẳng\(AC\)và\(SB\)

Ngày 15/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp\(S.ABC\)có đáy\(ABC\)là tam giác cân,\(AB = AC = 2a\), góc\(\widehat {BAC} = {120^\circ }\). Tam giác\(SAB\)cân tại\(S\)và nằm trong mặt phẳng vuông góc với đáy, góc tạo bởi mặt phẳng\(\left( {SBC} \right)\)và mặt phẳng đáy\(\left( {ABC} \right)\)bằng\({60^\circ }\). Tính khoảng cách giữa hai đường thẳng\(AC\)và\(SB\) A. \(\frac{{a\sqrt {15} … [Đọc thêm...] về

Cho hình chóp\(S.ABC\)có đáy\(ABC\)là tam giác cân,\(AB = AC = 2a\), góc\(\widehat {BAC} = {120^\circ }\). Tam giác\(SAB\)cân tại\(S\)và nằm trong mặt phẳng vuông góc với đáy, góc tạo bởi mặt phẳng\(\left( {SBC} \right)\)và mặt phẳng đáy\(\left( {ABC} \right)\)bằng\({60^\circ }\). Tính khoảng cách giữa hai đường thẳng\(AC\)và\(SB\)

Cho hình chóp\(\frac{{27}}{2}V\)có đáy\(\frac{9}{4}V\)là hình thoi cạnh \(a\),\(\widehat {BAD} = {60^\circ }\), tam giác\(SAD\)đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách\(\frac{{SM}}{{ME}} = 2\)giữa hai đường thẳng\(SA\)và\(BD\)bằng

Ngày 15/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp\(\frac{{27}}{2}V\)có đáy\(\frac{9}{4}V\)là hình thoi cạnh \(a\),\(\widehat {BAD} = {60^\circ }\), tam giác\(SAD\)đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách\(\frac{{SM}}{{ME}} = 2\)giữa hai đường thẳng\(SA\)và\(BD\)bằng A. \(\frac{{a\sqrt 6 }}{4}\). B. \(\frac{{a\sqrt 6 }}{2}\). C. \(\frac{{a\sqrt {15} }}{{10}}\). D. … [Đọc thêm...] về

Cho hình chóp\(\frac{{27}}{2}V\)có đáy\(\frac{9}{4}V\)là hình thoi cạnh \(a\),\(\widehat {BAD} = {60^\circ }\), tam giác\(SAD\)đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách\(\frac{{SM}}{{ME}} = 2\)giữa hai đường thẳng\(SA\)và\(BD\)bằng

Cho lăng trụ đứng tam giác\(AB

C. A’B’C’\)có đáy là một tam giác vuông cân tại\(B\),\(AB = BC = a\),\(AA’ = a\sqrt 2 \),\(M\)là trung điểm\(BC\).Tính khoảng cách giữa hai đường thẳng\(AM\)và\(B’C\).

Ngày 15/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho lăng trụ đứng tam giác\(AB C. A'B'C'\)có đáy là một tam giác vuông cân tại\(B\),\(AB = BC = a\),\(AA' = a\sqrt 2 \),\(M\)là trung điểm\(BC\).Tính khoảng cách giữa hai đường thẳng\(AM\)và\(B'C\). A. \(\frac{{a\sqrt 7 }}{7}\). B. \(\frac{{a\sqrt 3 }}{2}\). C. \(\frac{{2a}}{{\sqrt 5 }}\). D. \(a\sqrt 3 \). LỜI GIẢI CHI TIẾT +) Gọi\(E\)là … [Đọc thêm...] về

Cho lăng trụ đứng tam giác\(AB

C. A’B’C’\)có đáy là một tam giác vuông cân tại\(B\),\(AB = BC = a\),\(AA’ = a\sqrt 2 \),\(M\)là trung điểm\(BC\).Tính khoảng cách giữa hai đường thẳng\(AM\)và\(B’C\).

Cho hình hộp\(ABCD. A’B’C’D’\)cótất cả các cạnh đều bằng\(a\)và ba góc đỉnh\(A\)đều bằng\({60^\circ }\). Tính khoảng cách giữa hai đường thẳng\(AB\)và\(CC’\)

Ngày 15/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình hộp\(ABCD. A'B'C'D'\)cótất cả các cạnh đều bằng\(a\)và ba góc đỉnh\(A\)đều bằng\({60^\circ }\). Tính khoảng cách giữa hai đường thẳng\(AB\)và\(CC'\) A. \(\frac{{a\sqrt 6 }}{2}\). B. \(\frac{{a\sqrt 6 }}{3}\). C. \(\frac{{a\sqrt 6 }}{4}\). D. \(\frac{{a\sqrt 6 }}{6}\). LỜI GIẢI CHI TIẾT Hình hộp\(ABCD. A'B'C'D'\)cótất cả các cạnh đều … [Đọc thêm...] về

Cho hình hộp\(ABCD. A’B’C’D’\)cótất cả các cạnh đều bằng\(a\)và ba góc đỉnh\(A\)đều bằng\({60^\circ }\). Tính khoảng cách giữa hai đường thẳng\(AB\)và\(CC’\)

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Interim pages omitted …
  • Trang 15
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.