==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng: \(\left( P \right):x + 2y - 2z - 2 = 0,\) \(\left( Q \right):x + 2y - 2z + 4 = 0\). Mặt cầu (S) có tâm thuộc trục Ox và tiếp xúc với hai mặt phẳng đã cho có phương trình là: A. \({\left( {x - 3} \right)^2} + {y^2} + {z^2} = 4\) B. … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng: \(\left( P \right):x + 2y – 2z – 2 = 0,\) \(\left( Q \right):x + 2y – 2z + 4 = 0\). Mặt cầu (S) có tâm thuộc trục Ox và tiếp xúc với hai mặt phẳng đã cho có phương trình là:
Trac nghiem hinh hoc OXYZ phuong trinh mat cau
Đề: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;-1;0), B(0;3;-4). Phương trình nào dưới đây là phương trình mặt cầu đường kính AB?
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;-1;0), B(0;3;-4). Phương trình nào dưới đây là phương trình mặt cầu đường kính AB? A. \({(x - 1)^2} + {(y - 1)^2} + {(z + 2)^2} = 9.\) B. \({(x - 1)^2} + {(y - 1)^2} + {(z + 2)^2} = 3.\) C. \({(x - 1)^2} + {(y - 1)^2} + {(z - 2)^2} = … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;-1;0), B(0;3;-4). Phương trình nào dưới đây là phương trình mặt cầu đường kính AB?
Đề: Trong không gian với hệ tọa độ Oxyz, cho I(0; 2; 3). Viết phương trình mặt cầu tâm I tiếp xúc với trục Oy.
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho I(0; 2; 3). Viết phương trình mặt cầu tâm I tiếp xúc với trục Oy. A. \({x^2} + {(y + 2)^2} + {(z + 3)^3} = 3\) B. \({x^2} + {(y - 2)^2} + {(z - 3)^3} = 4\) C. \({x^2} + {(y - 2)^2} + {(z - 3)^3} = 9\) D. \({x^2} + {(y + 2)^2} + {(z + … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho I(0; 2; 3). Viết phương trình mặt cầu tâm I tiếp xúc với trục Oy.
Đề: Mặt phẳng \(\left( P \right):2x + 2y – z – 4 = 0\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 4y – 6z – 11 = 0.\) Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn. Tính bán kính đường tròn này.
==== Câu hỏi: Mặt phẳng \(\left( P \right):2x + 2y - z - 4 = 0\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y - 6z - 11 = 0.\) Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn. Tính bán kính đường tròn này. A. 4 B. 3 C. 5 D. \(\sqrt … [Đọc thêm...] vềĐề: Mặt phẳng \(\left( P \right):2x + 2y – z – 4 = 0\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 4y – 6z – 11 = 0.\) Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn. Tính bán kính đường tròn này.
Đề: Trong không gian với hệ trục tọa độ Oxyz. Cho mặt phẳng \(\left( P \right):x + 2y – z – 1 = 0\) và ba điểm \(A\left( {1;1;0} \right),\,\,B\left( { – 1;0;1} \right),\,\,C\left( {0;2;1} \right).\) Viết phương trình mặt cầu có tâm thuộc mặt phẳng (P) và đi qua ba điểm A, B, C.
==== Câu hỏi: Trong không gian với hệ trục tọa độ Oxyz. Cho mặt phẳng \(\left( P \right):x + 2y - z - 1 = 0\) và ba điểm \(A\left( {1;1;0} \right),\,\,B\left( { - 1;0;1} \right),\,\,C\left( {0;2;1} \right).\) Viết phương trình mặt cầu có tâm thuộc mặt phẳng (P) và đi qua ba điểm A, B, C. A. \({\left( {x + \frac{7}{6}} \right)^2} + {\left( {y + … [Đọc thêm...] vềĐề: Trong không gian với hệ trục tọa độ Oxyz. Cho mặt phẳng \(\left( P \right):x + 2y – z – 1 = 0\) và ba điểm \(A\left( {1;1;0} \right),\,\,B\left( { – 1;0;1} \right),\,\,C\left( {0;2;1} \right).\) Viết phương trình mặt cầu có tâm thuộc mặt phẳng (P) và đi qua ba điểm A, B, C.
Đề: Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu có tâm \(I\left( {1; – 4;3} \right)\) và đi qua \(A\left( {5; – 3;2} \right).\)
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu có tâm \(I\left( {1; - 4;3} \right)\) và đi qua \(A\left( {5; - 3;2} \right).\) A. \({\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 3} \right)^2} = 16.\) B. \({\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu có tâm \(I\left( {1; – 4;3} \right)\) và đi qua \(A\left( {5; – 3;2} \right).\)
Đề: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( {{S_m}} \right):{x^2} + {y^2} + {z^2} + 2mx – 2(m – 1)y – mz + m – 2 = 0.\) Với mọi \(m \in \mathbb{R},\) mặt cầu \(\left( {{S_m}} \right)\) luôn đi qua một đường tròn cố định. Tính bán kính r của đường tròn đó.
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( {{S_m}} \right):{x^2} + {y^2} + {z^2} + 2mx - 2(m - 1)y - mz + m - 2 = 0.\) Với mọi \(m \in \mathbb{R},\) mặt cầu \(\left( {{S_m}} \right)\) luôn đi qua một đường tròn cố định. Tính bán kính r của đường tròn đó. A. \(r = 3.\) B. \(r = \sqrt 2 … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( {{S_m}} \right):{x^2} + {y^2} + {z^2} + 2mx – 2(m – 1)y – mz + m – 2 = 0.\) Với mọi \(m \in \mathbb{R},\) mặt cầu \(\left( {{S_m}} \right)\) luôn đi qua một đường tròn cố định. Tính bán kính r của đường tròn đó.
Đề: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x – 2}}{2} = \frac{{y – 1}}{2} = \frac{{z + 1}}{{ – 1}}\) và điểm \(I\left( {2; – 1;1} \right).\) Viết phương trình mặt cầu cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông cân tại I.
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 2}}{2} = \frac{{y - 1}}{2} = \frac{{z + 1}}{{ - 1}}\) và điểm \(I\left( {2; - 1;1} \right).\) Viết phương trình mặt cầu cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông cân tại I. A. \({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x – 2}}{2} = \frac{{y – 1}}{2} = \frac{{z + 1}}{{ – 1}}\) và điểm \(I\left( {2; – 1;1} \right).\) Viết phương trình mặt cầu cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông cân tại I.
Đề: Trong không gian với hệ tọa độ Oxyz, lập phương trình mặt cầu (S) có tâm I(1;-2;1) và tiếp xúc với mặt phẳng \(\left( P \right):2x – y + 2z = 0.\)
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, lập phương trình mặt cầu (S) có tâm I(1;-2;1) và tiếp xúc với mặt phẳng \(\left( P \right):2x - y + 2z = 0.\) A. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 2\) B. \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, lập phương trình mặt cầu (S) có tâm I(1;-2;1) và tiếp xúc với mặt phẳng \(\left( P \right):2x – y + 2z = 0.\)
Đề: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình \({x^2} + {y^2} + {z^2} – 4x + 2my + 6z + 13 = 0\) là phương trình của mặt cầu.
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình \({x^2} + {y^2} + {z^2} - 4x + 2my + 6z + 13 = 0\) là phương trình của mặt cầu. A. \(m \ne 0\) B. \(m C. \(m > 0\) D. \(m \in \mathbb{R}\) Hãy chọn trả lời đúng trước … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình \({x^2} + {y^2} + {z^2} – 4x + 2my + 6z + 13 = 0\) là phương trình của mặt cầu.