• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trac nghiem hinh hoc OXYZ phuong trinh mat cau

Đề: Trong không gian với hệ trục tọa độ Oxyz, cho biết \(\left( \omega  \right)\) là tập hợp tâm của các mặt cầu (S) đi qua điểm \(A\left( {1;1;1} \right)\) đồng thời tiếp xúc với hai mặt phẳng \(\left( \alpha  \right):x + y + z – 6 = 0\) và \(\left( \beta  \right):x + y + z + 6 = 0.\) Diện tích hình phẳng giới hạn bởi đường cong \(\left( \omega  \right)\) là:

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ trục tọa độ Oxyz, cho biết \(\left( \omega  \right)\) là tập hợp tâm của các mặt cầu (S) đi qua điểm \(A\left( {1;1;1} \right)\) đồng thời tiếp xúc với hai mặt phẳng \(\left( \alpha  \right):x + y + z - 6 = 0\) và \(\left( \beta  \right):x + y + z + 6 = 0.\) Diện tích hình phẳng giới hạn bởi đường cong \(\left( \omega  \right)\) … [Đọc thêm...] vềĐề: Trong không gian với hệ trục tọa độ Oxyz, cho biết \(\left( \omega  \right)\) là tập hợp tâm của các mặt cầu (S) đi qua điểm \(A\left( {1;1;1} \right)\) đồng thời tiếp xúc với hai mặt phẳng \(\left( \alpha  \right):x + y + z – 6 = 0\) và \(\left( \beta  \right):x + y + z + 6 = 0.\) Diện tích hình phẳng giới hạn bởi đường cong \(\left( \omega  \right)\) là:

Đề: Trong không gian với hệ tọa độ \(\left( {Oxyz} \right)\), cho hình cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 6x – 2y – 4z – 11 = 0\) và mặt phẳng \(2x + 2y – z + 3 = 0\) cắt nhau theo hình tròn (C). Tính diện tích toàn phần của hình nón có đỉnh là tâm (S) của và đáy là hình tròn (C).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ \(\left( {Oxyz} \right)\), cho hình cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 6x - 2y - 4z - 11 = 0\) và mặt phẳng \(2x + 2y - z + 3 = 0\) cắt nhau theo hình tròn (C). Tính diện tích toàn phần của hình nón có đỉnh là tâm (S) của và đáy là hình tròn (C). A. \(V = 36\pi \) B. \(V … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ \(\left( {Oxyz} \right)\), cho hình cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 6x – 2y – 4z – 11 = 0\) và mặt phẳng \(2x + 2y – z + 3 = 0\) cắt nhau theo hình tròn (C). Tính diện tích toàn phần của hình nón có đỉnh là tâm (S) của và đáy là hình tròn (C).

Đề: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = 2t\\y = t\\z = 4\end{array} \right.\) và \({d_2}:\left\{ \begin{array}{l}x = 3 – t'\\y = t'\\z = 0\end{array} \right.\). Viết phương trình mặt cầu (S) có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng d1 và d2.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = 2t\\y = t\\z = 4\end{array} \right.\) và \({d_2}:\left\{ \begin{array}{l}x = 3 - t'\\y = t'\\z = 0\end{array} \right.\). Viết phương trình mặt cầu (S) có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng d1 và d2. A. \(\left( S … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = 2t\\y = t\\z = 4\end{array} \right.\) và \({d_2}:\left\{ \begin{array}{l}x = 3 – t'\\y = t'\\z = 0\end{array} \right.\). Viết phương trình mặt cầu (S) có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng d1 và d2.

Đề: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình \({x^2} + {y^2} + {z^2} – 2mx + 2\left( {m – 2} \right)y – 2\left( {m + 3} \right)z + 8m + 37 = 0\) là phương trình của một mặt cầu.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình \({x^2} + {y^2} + {z^2} - 2mx + 2\left( {m - 2} \right)y - 2\left( {m + 3} \right)z + 8m + 37 = 0\) là phương trình của một mặt cầu. A. \(m \le  - 2{\rm{ }}hay{\rm{ }}m \ge 4\) B. \(m   - 2\) C. \(m 4\)  … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình \({x^2} + {y^2} + {z^2} – 2mx + 2\left( {m – 2} \right)y – 2\left( {m + 3} \right)z + 8m + 37 = 0\) là phương trình của một mặt cầu.

Đề: Trong không gian Oxyz, cho phương trình \({x^2} + {y^2} + {z^2} – 2\left( {m + 2} \right)x + 4my – 2mz + 5{m^2} + 9x = 0\). Tìm m để phương trình đó là phương trình mặt cầu.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian Oxyz, cho phương trình \({x^2} + {y^2} + {z^2} - 2\left( {m + 2} \right)x + 4my - 2mz + 5{m^2} + 9x = 0\). Tìm m để phương trình đó là phương trình mặt cầu. A. \( - 5 B. \(m 1\) C. \(m \le  - 5\)hoặc \(m \ge 1\) D. m > 1 Hãy chọn trả lời đúng … [Đọc thêm...] vềĐề: Trong không gian Oxyz, cho phương trình \({x^2} + {y^2} + {z^2} – 2\left( {m + 2} \right)x + 4my – 2mz + 5{m^2} + 9x = 0\). Tìm m để phương trình đó là phương trình mặt cầu.

Đề: Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu \(\left( S \right)\) có tâm \(I\left( {1;0; – 3} \right)\) và đi qua điểm \(M\left( {2;2; – 1} \right).\)

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu \(\left( S \right)\) có tâm \(I\left( {1;0; - 3} \right)\) và đi qua điểm \(M\left( {2;2; - 1} \right).\) A. \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 3} \right)^2} = 9.\) B. \(\left( S \right):{\left( {x - 1} \right)^2} + … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu \(\left( S \right)\) có tâm \(I\left( {1;0; – 3} \right)\) và đi qua điểm \(M\left( {2;2; – 1} \right).\)

Đề: Trong không gian hệ tọa độ Oxyz, mặt phẳng \(\left( P \right):x + y + z = 0\) cắt mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 2} \right)^2} = 4\) theo một đường tròn có tọa độ tâm là:

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian hệ tọa độ Oxyz, mặt phẳng \(\left( P \right):x + y + z = 0\) cắt mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 2} \right)^2} = 4\) theo một đường tròn có tọa độ tâm là: A. \(\left( {1;1; - 2} \right)\) B. \(\left( {1; - 2;1} … [Đọc thêm...] vềĐề: Trong không gian hệ tọa độ Oxyz, mặt phẳng \(\left( P \right):x + y + z = 0\) cắt mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 2} \right)^2} = 4\) theo một đường tròn có tọa độ tâm là:

Đề: Trong không gian Oxyz, mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 4y – 4 = 0\) cắt mặt phẳng \(\left( P \right):x + y – z + 4 = 0\) theo giao tuyến đường tròn (C). Tính diện tích S của hình tròn giới hạn bởi (C).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian Oxyz, mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y - 4 = 0\) cắt mặt phẳng \(\left( P \right):x + y - z + 4 = 0\) theo giao tuyến đường tròn (C). Tính diện tích S của hình tròn giới hạn bởi (C). A. \(S=6\pi\)  B. \(S = \frac{{2\pi \sqrt {78} … [Đọc thêm...] vềĐề: Trong không gian Oxyz, mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 4y – 4 = 0\) cắt mặt phẳng \(\left( P \right):x + y – z + 4 = 0\) theo giao tuyến đường tròn (C). Tính diện tích S của hình tròn giới hạn bởi (C).

Đề: Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {2;0;0} \right),B\left( {0;4;0} \right)\), \(C\left( {0;0;6} \right)\) và \(D\left( {2;4;6} \right)\). Tập hợp các điểm M thỏa mãn \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} } \right| = 4\) là mặt cầu có phương trình:

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {2;0;0} \right),B\left( {0;4;0} \right)\), \(C\left( {0;0;6} \right)\) và \(D\left( {2;4;6} \right)\). Tập hợp các điểm M thỏa mãn \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} } \right| = 4\) là mặt cầu có phương … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {2;0;0} \right),B\left( {0;4;0} \right)\), \(C\left( {0;0;6} \right)\) và \(D\left( {2;4;6} \right)\). Tập hợp các điểm M thỏa mãn \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} } \right| = 4\) là mặt cầu có phương trình:

Đề: Trong không gian với hệ tọa độ Oxyz, xác định tọa độ tâm J của đường tròn giao tuyến của mặt cầu   với mặt phẳng .

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, xác định tọa độ tâm J của đường tròn giao tuyến của mặt cầu   với mặt phẳng . A. \(J\left( { - \frac{7}{3}; - \frac{7}{3}; - \frac{2}{3}} \right).\) B. \(J(-2;-2;-2)\) C. \(J\left( { - \frac{2}{3}; - \frac{7}{3}; - \frac{7}{3}} \right).\) … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, xác định tọa độ tâm J của đường tròn giao tuyến của mặt cầu   với mặt phẳng .

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 11
  • Trang 12
  • Trang 13
  • Trang 14
  • Trang 15
  • Interim pages omitted …
  • Trang 21
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.