• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trac nghiem hinh hoc OXYZ phuong trinh mat cau

Đề: Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 6y – 8z – 10 = 0\) và mặt phẳn

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 6y - 8z - 10 = 0\) và mặt phẳng \(\left( P \right):x + 2y - 2z + 2017 = 0\). Viết phương trình các mặt phẳng \((Q)\) song song với \((P)\) và tiếp xúc với \((S)\). A. \((Q_1): x+2y-2z+25=0\) và \((Q_2): … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 6y – 8z – 10 = 0\) và mặt phẳn

Đề: Cho mặt cầu \(\left( S \right):{\rm{ }}{x^2} + {y^2} + {z^2} – 2x – 4y + z – 1 = 0\).  Xác định tọa độ tâm I của mặt cầu.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Cho mặt cầu \(\left( S \right):{\rm{ }}{x^2} + {y^2} + {z^2} - 2x - 4y + z - 1 = 0\).  Xác định tọa độ tâm I của mặt cầu. A. \(I\left( {1;2; - \frac{1}{2}} \right)\) B. \(I\left( {2;4;1} \right)\) C. \(I\left( { - 2; - 4; - 1} \right)\) D. \(I\left( { - 1; - 2;\frac{1}{2}} … [Đọc thêm...] vềĐề: Cho mặt cầu \(\left( S \right):{\rm{ }}{x^2} + {y^2} + {z^2} – 2x – 4y + z – 1 = 0\).  Xác định tọa độ tâm I của mặt cầu.

Đề: Viết phương trình mặt cầu (S) có tâm I(-1;2;1) và tiếp xúc với mặt phẳng (P): \(x – 2y – 2z – 2 = 0\).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Viết phương trình mặt cầu (S) có tâm I(-1;2;1) và tiếp xúc với mặt phẳng (P): \(x - 2y - 2z - 2 = 0\). A. \((S):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 3\) B. \((S):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = … [Đọc thêm...] vềĐề: Viết phương trình mặt cầu (S) có tâm I(-1;2;1) và tiếp xúc với mặt phẳng (P): \(x – 2y – 2z – 2 = 0\).

Đề: Viết phương trình mặt cầu (S) có tâm I(1 ; 0 ; -2), bán kính R = \(\sqrt 2 \)

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Viết phương trình mặt cầu (S) có tâm I(1 ; 0 ; -2), bán kính R = \(\sqrt 2 \) A. \((S) :(x- 1)^2 + y^2 + (z + 2)^2 = 2.\) B. \((S):  (x- 1)^2 + y^2 + (z- 2 )^2 = 2.\) C. \((S):  (x- 1)^2 + y^2 + (z- 2 )^2 = 2.\) D. \((S):  (x+ 1)^2 + y^2 + (z – 2)^2 = 2.\) … [Đọc thêm...] vềĐề: Viết phương trình mặt cầu (S) có tâm I(1 ; 0 ; -2), bán kính R = \(\sqrt 2 \)

Đề: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x – y + 2z + 5 = 0\) và các điểm \(A\left( {0;0;4} \right),B\left( {2;0;0} \right)\). Mặt cầu \(\left( S \right)\) có bán kính nhỏ nhẩt, đi qua O, A, B và tiếp xúc với mặt phẳng (P) có tâm là:

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x - y + 2z + 5 = 0\) và các điểm \(A\left( {0;0;4} \right),B\left( {2;0;0} \right)\). Mặt cầu \(\left( S \right)\) có bán kính nhỏ nhẩt, đi qua O, A, B và tiếp xúc với mặt phẳng (P) có tâm là: A. \(I\left( {1;2;2} \right)\) B. \(I\left( {1; - … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x – y + 2z + 5 = 0\) và các điểm \(A\left( {0;0;4} \right),B\left( {2;0;0} \right)\). Mặt cầu \(\left( S \right)\) có bán kính nhỏ nhẩt, đi qua O, A, B và tiếp xúc với mặt phẳng (P) có tâm là:

Đề: Trong không gian toạ độ Oxyz, cho mặt cầu \((S):{(x + 2)^2} + {(y – 1)^2} + {(z – 2)^2} = 25.\)  Tìm toạ độ tâm I và bán kính R của (S).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian toạ độ Oxyz, cho mặt cầu \((S):{(x + 2)^2} + {(y - 1)^2} + {(z - 2)^2} = 25.\)  Tìm toạ độ tâm I và bán kính R của (S). A. I(2;-1;-2) và R = 5       B. I(-2;1;2) và R =25 C. I(-2;1;2) và R = 5        D. I(2;-1;-2) và R = 25 Hãy chọn trả lời đúng … [Đọc thêm...] vềĐề: Trong không gian toạ độ Oxyz, cho mặt cầu \((S):{(x + 2)^2} + {(y – 1)^2} + {(z – 2)^2} = 25.\)  Tìm toạ độ tâm I và bán kính R của (S).

Đề: Trong không gian toạ độ Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {z^2} + 4x – 2y + 4z + 5 = 0\) và mặt phẳng (P): x=3. Khẳng định nào sau đây là đúng?

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian toạ độ Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {z^2} + 4x - 2y + 4z + 5 = 0\) và mặt phẳng (P): x=3. Khẳng định nào sau đây là đúng? A. Giao của (S) và (P) là hai điểm phân biệt. B. Giao của (S) và (P) là một điểm C. Giao của (S) và (P) là một đường tròn. D. … [Đọc thêm...] vềĐề: Trong không gian toạ độ Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {z^2} + 4x – 2y + 4z + 5 = 0\) và mặt phẳng (P): x=3. Khẳng định nào sau đây là đúng?

Đề: Trong không gian toạ độ Oxyz, cho hai mặt phẳng \((P):x – 1 = 0\) và \((Q):z – 1 = 0\). Xác định quỹ tích tâm các mặt cầu tiếp xúc với cả hai mặt phẳng (P) và (Q).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian toạ độ Oxyz, cho hai mặt phẳng \((P):x - 1 = 0\) và \((Q):z - 1 = 0\). Xác định quỹ tích tâm các mặt cầu tiếp xúc với cả hai mặt phẳng (P) và (Q). A. Quỹ tích là mặt phẳng có phương trình x=z B. Quỹ tích là mặt phẳng có phương trình x=z và x+z-2=0 C. Quỹ tích là hai mặt phẳng có … [Đọc thêm...] vềĐề: Trong không gian toạ độ Oxyz, cho hai mặt phẳng \((P):x – 1 = 0\) và \((Q):z – 1 = 0\). Xác định quỹ tích tâm các mặt cầu tiếp xúc với cả hai mặt phẳng (P) và (Q).

Đề: Cho mặt phẳng (P) và mặt cầu (S) có phương trình lần lượt là \(\left( P \right):2x + 2y + z – {3^2} + 4m – 5 = 0\), \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 2y – 2z – 6 = 0\). Tất cả các giá trị của m để (P) tiếp xúc với (S) là:

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Cho mặt phẳng (P) và mặt cầu (S) có phương trình lần lượt là \(\left( P \right):2x + 2y + z - {3^2} + 4m - 5 = 0\), \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 6 = 0\). Tất cả các giá trị của m để (P) tiếp xúc với (S) là: A. \(m =  - 1\) hoặc \(m = 5\) B. \(m =  - 1\) hoặc \(m =  - 5\)    … [Đọc thêm...] vềĐề: Cho mặt phẳng (P) và mặt cầu (S) có phương trình lần lượt là \(\left( P \right):2x + 2y + z – {3^2} + 4m – 5 = 0\), \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 2y – 2z – 6 = 0\). Tất cả các giá trị của m để (P) tiếp xúc với (S) là:

Đề: Có bao nhiêu mặt phẳng song song với mặt phẳng \(\left( \alpha  \right):x + y + z = 0\) đồng thời tiếp xúc với mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2{\rm{x}} – 2y – 2{\rm{z}} = 0?\)

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Có bao nhiêu mặt phẳng song song với mặt phẳng \(\left( \alpha  \right):x + y + z = 0\) đồng thời tiếp xúc với mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x}} - 2y - 2{\rm{z}} = 0?\) A. 1 B. 0 C. Vô số. D. 2 Hãy chọn trả lời đúng trước khi xem đáp án … [Đọc thêm...] vềĐề: Có bao nhiêu mặt phẳng song song với mặt phẳng \(\left( \alpha  \right):x + y + z = 0\) đồng thời tiếp xúc với mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2{\rm{x}} – 2y – 2{\rm{z}} = 0?\)

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 10
  • Trang 11
  • Trang 12
  • Trang 13
  • Trang 14
  • Interim pages omitted …
  • Trang 21
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.