Kính viễn vọng không gian Hubble được đưa vào vũ trụ ngày 24/4/1990 bằng tàu con thoi Discovery. Vận tốc của tàu con thoi trong sứ mệnh này, từ lúc cất cánh tại thời điểm ${t=0({~s})}$ cho đến khi tên lửa đẩy được phóng đi tại thời điểm ${t=26}$ (s) được cho bởi hàm số sau: $v$ được tính bằng $ft/s,1\text{ feet }=0,3048~m.$Hỏi gia tốc của tàu con thoi sẽ tăng trong khoảng thời … [Đọc thêm...] vềKính viễn vọng không gian Hubble được đưa vào vũ trụ ngày 24/4/1990 bằng tàu con thoi Discovery
Tính đơn điệu – trả lời ngắn
Giả sử lợi nhuận của một cửa hàng tạp hoá nhỏ trong ngày thứ ${x}$ của một tháng nào đó được cho bơi công thức ${h(x)=-2 x^2+40 x+700}$ (đơn vị: nghìn đồng)
Giả sử lợi nhuận của một cửa hàng tạp hoá nhỏ trong ngày thứ ${x}$ của một tháng nào đó được cho bơi công thức ${h(x)=-2 x^2+40 x+700}$ (đơn vị: nghìn đồng). Giả sử tháng đó có 30 ngày, hỏi có bao nhiêu ngày trong tháng đó cửa hàng có lợi nhuận tăng so với lợi nhuận ngày liền trước đó?Lời giảiTrả lời: 9Ta có: ${h^{\prime}(x)=-4 x+40 ; h^{\prime}(x)=0 \Leftrightarrow x=10}$.Bảng … [Đọc thêm...] vềGiả sử lợi nhuận của một cửa hàng tạp hoá nhỏ trong ngày thứ ${x}$ của một tháng nào đó được cho bơi công thức ${h(x)=-2 x^2+40 x+700}$ (đơn vị: nghìn đồng)
Một tên lửa bay vào không trung với quãng đường đi được là $s(t)\,(km)$ là hàm phụ thuộc theo biến ${t}$ (giây) tuân theo biểu thức sau: ${s(t)=e^{t^2+3}+2 t e^{3 t+1}({~km})}$
Một tên lửa bay vào không trung với quãng đường đi được là $s(t)\,(km)$ là hàm phụ thuộc theo biến ${t}$ (giây) tuân theo biểu thức sau: ${s(t)=e^{t^2+3}+2 t e^{3 t+1}({~km})}$. Hỏi vận tốc của tên lửa sau 1 giây là bao nhiêu, làm tròn kết quả đến hàng đơn vị (biết hàm biểu thị vận tốc là đạo hàm cấp một của hàm biểu thị quãng đường theo thời gian)?Lời giảiTrả lời: … [Đọc thêm...] vềMột tên lửa bay vào không trung với quãng đường đi được là $s(t)\,(km)$ là hàm phụ thuộc theo biến ${t}$ (giây) tuân theo biểu thức sau: ${s(t)=e^{t^2+3}+2 t e^{3 t+1}({~km})}$
Trong 5 giây đầu tiên, một chất điểm chuyển động theo phương trình${s(t)=-t^3+6 t^2+t+5}$ trong đó ${t}$ tính bằng giây và ${s}$ tính bằng mét
Trong 5 giây đầu tiên, một chất điểm chuyển động theo phương trình${s(t)=-t^3+6 t^2+t+5}$ trong đó ${t}$ tính bằng giây và ${s}$ tính bằng mét. Chất điểm có vận tốc tức thời lớn nhất bằng bao nhiêu trong 5 giây đầu tiên đó?Lời giảiTrả lời: 13Ta có: ${v(t)=s^{\prime}(t)=-3 t^2+12 t+1}$.Nhận xét: ${v(t)}$ có đồ thị là một parabol nên trong ${5 s}$ đầu tiên vận tốc tức thời cúa … [Đọc thêm...] vềTrong 5 giây đầu tiên, một chất điểm chuyển động theo phương trình
${s(t)=-t^3+6 t^2+t+5}$ trong đó ${t}$ tính bằng giây và ${s}$ tính bằng mét
Hằng ngày mực nước của một con kênh lên xuống theo thủy triều. Độ sâu $h\left( \text{m} \right)$ của mực nước trong kênh tại thời điểm $t\left( \text{h} \right)\left( 0\le t\le 24 \right)$ trong ngày được xác định bởi công thức $h=2\cos \left( \dfrac{\pi t}{12}+\dfrac{\pi }{3} \right)+5$
Hằng ngày mực nước của một con kênh lên xuống theo thủy triều. Độ sâu $h\left( \text{m} \right)$ của mực nước trong kênh tại thời điểm $t\left( \text{h} \right)\left( 0\le t\le 24 \right)$ trong ngày được xác định bởi công thức $h=2\cos \left( \dfrac{\pi t}{12}+\dfrac{\pi }{3} \right)+5$. Gọi $\left( a;b \right)$ là khoảng thời gian trong ngày mà độ sâu của mực nước trong kênh … [Đọc thêm...] vềHằng ngày mực nước của một con kênh lên xuống theo thủy triều. Độ sâu $h\left( \text{m} \right)$ của mực nước trong kênh tại thời điểm $t\left( \text{h} \right)\left( 0\le t\le 24 \right)$ trong ngày được xác định bởi công thức $h=2\cos \left( \dfrac{\pi t}{12}+\dfrac{\pi }{3} \right)+5$
Thể tích $V$ của 1kg nước ở nhiệt độ $T\left( {{0}^{\circ }}\le T\le {{30}^{\circ }} \right)$ được cho bởi công thức $V=999,87-0,06426T+0,0085043{{T}^{2}}-0,0000679{{T}^{3}}$. Gọi $\left( {{a}^{\circ }};{{b}^{\circ }} \right)$ là khoảng nhiệt độ mà trong khoảng đó khi nhiệt độ tăng thì thể tích $V$ của 1kg nước cũng tăng
Thể tích $V$ của 1kg nước ở nhiệt độ $T\left( {{0}^{\circ }}\le T\le {{30}^{\circ }} \right)$ được cho bởi công thức $V=999,87-0,06426T+0,0085043{{T}^{2}}-0,0000679{{T}^{3}}$. Gọi $\left( {{a}^{\circ }};{{b}^{\circ }} \right)$ là khoảng nhiệt độ mà trong khoảng đó khi nhiệt độ tăng thì thể tích $V$ của 1kg nước cũng tăng. Tính giá trị biểu thức $P=b-a$ ( $a,b$ làm tròn đến hàng … [Đọc thêm...] vềThể tích $V$ của 1kg nước ở nhiệt độ $T\left( {{0}^{\circ }}\le T\le {{30}^{\circ }} \right)$ được cho bởi công thức $V=999,87-0,06426T+0,0085043{{T}^{2}}-0,0000679{{T}^{3}}$. Gọi $\left( {{a}^{\circ }};{{b}^{\circ }} \right)$ là khoảng nhiệt độ mà trong khoảng đó khi nhiệt độ tăng thì thể tích $V$ của 1kg nước cũng tăng
Thể tích $V\left( c{{m}^{3}} \right)$ của $1kg$ nước tại nhiệt độ $T\left( {{0}^{{}^\circ }}C\le T\le {{30}^{{}^\circ }}C \right)$ được tính bởi công thức $V\left( T \right)=999,87-0,06426T+0,0058043{{T}^{2}}-0,0000679{{T}^{3}}$
Thể tích $V\left( c{{m}^{3}} \right)$ của $1kg$ nước tại nhiệt độ $T\left( {{0}^{{}^\circ }}C\le T\le {{30}^{{}^\circ }}C \right)$ được tính bởi công thức $V\left( T \right)=999,87-0,06426T+0,0058043{{T}^{2}}-0,0000679{{T}^{3}}$. Thể tích nước $V\left( T \right)\left( {{0}^{{}^\circ }}C\le T\le {{30}^{{}^\circ }}C \right)$ giảm trong khoảng nhiệt độ $\left( a{}^\circ ;b{}^\circ … [Đọc thêm...] vềThể tích $V\left( c{{m}^{3}} \right)$ của $1kg$ nước tại nhiệt độ $T\left( {{0}^{{}^\circ }}C\le T\le {{30}^{{}^\circ }}C \right)$ được tính bởi công thức $V\left( T \right)=999,87-0,06426T+0,0058043{{T}^{2}}-0,0000679{{T}^{3}}$
Cho hàm số $y=f\left( x \right)$ liên tục trên D và có đạo hàm ${f}’\left( x \right)={{\left( x+1 \right)}^{2}}{{\left( x-1 \right)}^{3}}\left( 2-x \right)$. Hàm số $y=f\left( x \right)$ đồng biến trên khoảng $\left( a;b \right)$.
Cho hàm số $y=f\left( x \right)$ liên tục trên D và có đạo hàm ${f}'\left( x \right)={{\left( x+1 \right)}^{2}}{{\left( x-1 \right)}^{3}}\left( 2-x \right)$. Hàm số $y=f\left( x \right)$ đồng biến trên khoảng $\left( a;b \right)$. Tính $\dfrac{a}{b}$. Đáp án: 0,5 Lời giải: Đáp án: 0,5 Ta có ${f}'\left( x \right)=0\Leftrightarrow {{\left( x+1 \right)}^{2}}{{\left( … [Đọc thêm...] vềCho hàm số $y=f\left( x \right)$ liên tục trên D và có đạo hàm ${f}’\left( x \right)={{\left( x+1 \right)}^{2}}{{\left( x-1 \right)}^{3}}\left( 2-x \right)$. Hàm số $y=f\left( x \right)$ đồng biến trên khoảng $\left( a;b \right)$.
Cho hàm số $f\left( x \right)=\dfrac{1}{2025}{{x}^{2025}}-\dfrac{3}{2023}{{x}^{2023}}-\dfrac{4}{2021}{{x}^{2021}}+2026$, biết hàm số $f\left( x \right)$ nghịch biến trên khoảng $\left( a;b \right)$ có độ dài bằng $4$
Cho hàm số $f\left( x \right)=\dfrac{1}{2025}{{x}^{2025}}-\dfrac{3}{2023}{{x}^{2023}}-\dfrac{4}{2021}{{x}^{2021}}+2026$, biết hàm số $f\left( x \right)$ nghịch biến trên khoảng $\left( a;b \right)$ có độ dài bằng $4$. Tính giá trị biểu thức $P=a+3b$. Đáp án: 4 Lời giải: Hàm số $f\left( x … [Đọc thêm...] vềCho hàm số $f\left( x \right)=\dfrac{1}{2025}{{x}^{2025}}-\dfrac{3}{2023}{{x}^{2023}}-\dfrac{4}{2021}{{x}^{2021}}+2026$, biết hàm số $f\left( x \right)$ nghịch biến trên khoảng $\left( a;b \right)$ có độ dài bằng $4$
Kính viễn vọng không gian Hubble được đưa vào vũ trụ ngày 24/4/1990 bằng tàu con thoi Discovery. Vận tốc của tàu con thoi trong sứ mệnh này
Kính viễn vọng không gian Hubble được đưa vào vũ trụ ngày 24/4/1990 bằng tàu con thoi Discovery. Vận tốc của tàu con thoi trong sứ mệnh này, từ lúc cất cánh tại thời điểm ${t=0({s})}$ cho đến khi tên lửa đẩy được phóng đi tại thời điểm ${t=126({s})}$, cho bởi hàm số sau: $v(t)=0,001302{{t}^{3}}-0,09029{{t}^{2}}+23(v$ được tính bằng $ft/s,1ft=0,3048m)$. Biết gia tốc của tàu con … [Đọc thêm...] vềKính viễn vọng không gian Hubble được đưa vào vũ trụ ngày 24/4/1990 bằng tàu con thoi Discovery. Vận tốc của tàu con thoi trong sứ mệnh này
