• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Khảo sát và vẽ đồ thị hàm số

Đề: Cho hàm số : $y = (x – 1)(x^2 + mx + m)$ trong đó $m$ là tham số.$1.$ Khảo sát và vẽ đồ thị hàm của hàm số ứng với giá trị $m =-2.$$2.$ Tìm các giá trị của tham số m để đồ thị của hàm số tiếp xúc với trục hoành. Xác định tọa độ của tiếp điểm trong mỗi trường hợp tìm được.

Ngày 07/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số : $y = (x - 1)(x^2 + mx + m)$ trong đó $m$ là tham số.$1.$ Khảo sát và vẽ đồ thị hàm của hàm số ứng với giá trị $m =-2.$$2.$ Tìm các giá trị của tham số m để đồ thị của hàm số tiếp xúc với trục hoành. Xác định tọa độ của tiếp điểm trong mỗi trường hợp tìm được. Lời giải $1.$ Bạn đọc tự giải$2.$ Hàm số $y' = ({x^2} + mx + m) + (x - 1)(2x + m)$Đồ thị hàm … [Đọc thêm...] vềĐề: Cho hàm số : $y = (x – 1)(x^2 + mx + m)$ trong đó $m$ là tham số.$1.$ Khảo sát và vẽ đồ thị hàm của hàm số ứng với giá trị $m =-2.$$2.$ Tìm các giá trị của tham số m để đồ thị của hàm số tiếp xúc với trục hoành. Xác định tọa độ của tiếp điểm trong mỗi trường hợp tìm được.

Đề: Cho hàm số \(y = {x^3} – 3m{x^2} + 3\left( {{m^2} – 1} \right)x + 1 – {m^2}\) có đồ thị \(\left( {{C_m}} \right)\) với $m$ là tham số$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi \(m = 2\)$2$. Tìm điều kiện của m để đồ thị \(\left( {{C_m}} \right)\) chứa hai điểm phân biệt, đối xứng nhau qua điểm $O(0, 0)$

Ngày 07/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số \(y = {x^3} - 3m{x^2} + 3\left( {{m^2} - 1} \right)x + 1 - {m^2}\) có đồ thị \(\left( {{C_m}} \right)\) với $m$ là tham số$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi \(m = 2\)$2$. Tìm điều kiện của m để đồ thị \(\left( {{C_m}} \right)\) chứa hai điểm phân biệt, đối xứng nhau qua điểm $O(0, 0)$ Lời giải $1$. Bạn đọc tự giải$2$. \(\left( {{C_m}} … [Đọc thêm...] vềĐề: Cho hàm số \(y = {x^3} – 3m{x^2} + 3\left( {{m^2} – 1} \right)x + 1 – {m^2}\) có đồ thị \(\left( {{C_m}} \right)\) với $m$ là tham số$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi \(m = 2\)$2$. Tìm điều kiện của m để đồ thị \(\left( {{C_m}} \right)\) chứa hai điểm phân biệt, đối xứng nhau qua điểm $O(0, 0)$

Đề: Cho hàm số:  $f(x) = x^n + (c – n)^n$.  Trong đó $c > 0$, và $n$ là một số nguyên dương lớn hơn $1$.a) Khảo sát sự biến thiên của hàm số đó.b) Từ kết quả ấy, chứng minh bất đẳng thức:  ${( {\frac{{a + b}}{2}} )^n} \le \frac{{{a^n} + {b^n}}}{2}$Với $a, b$ là hai số tùy ý thỏa mãn điều kiện $a + b \ge 0$ còn $n$ là số nguyên dương bất kỳ

Ngày 07/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số:  $f(x) = x^n + (c - n)^n$.  Trong đó $c > 0$, và $n$ là một số nguyên dương lớn hơn $1$.a) Khảo sát sự biến thiên của hàm số đó.b) Từ kết quả ấy, chứng minh bất đẳng thức:  ${( {\frac{{a + b}}{2}} )^n} \le \frac{{{a^n} + {b^n}}}{2}$Với $a, b$ là hai số tùy ý thỏa mãn điều kiện $a + b \ge 0$ còn $n$ là số nguyên dương bất kỳ Lời giải a) Hàm số được xác … [Đọc thêm...] vềĐề: Cho hàm số:  $f(x) = x^n + (c – n)^n$.  Trong đó $c > 0$, và $n$ là một số nguyên dương lớn hơn $1$.a) Khảo sát sự biến thiên của hàm số đó.b) Từ kết quả ấy, chứng minh bất đẳng thức:  ${( {\frac{{a + b}}{2}} )^n} \le \frac{{{a^n} + {b^n}}}{2}$Với $a, b$ là hai số tùy ý thỏa mãn điều kiện $a + b \ge 0$ còn $n$ là số nguyên dương bất kỳ

Đề: Cho hàm số $y = f(x) = x^3 +  ax  +  2$ với $a$ là tham số.$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $a =-3.$$2$. Tìm tất cả các giá trị của $a$ để đồ thị hàm số $y = f(x)$ cắt trục hoành tại một và chỉ một điểm.

Ngày 06/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số $y = f(x) = x^3 +  ax  +  2$ với $a$ là tham số.$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $a =-3.$$2$. Tìm tất cả các giá trị của $a$ để đồ thị hàm số $y = f(x)$ cắt trục hoành tại một và chỉ một điểm. Lời giải $1$). Xin dành cho bạn đọc.$2$). Hoành độ  giao điểm với trục hoành là nghiệm phương trình             $x^3{\rm{ +  ax  +  2 = 0}} … [Đọc thêm...] vềĐề: Cho hàm số $y = f(x) = x^3 +  ax  +  2$ với $a$ là tham số.$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $a =-3.$$2$. Tìm tất cả các giá trị của $a$ để đồ thị hàm số $y = f(x)$ cắt trục hoành tại một và chỉ một điểm.

Đề: Cho hàm số: $y = \frac{3(x + 1)}{x – 2}\,\,\,\,(C)$$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số.$2$. Viết phương trình các đường thẳng đi qua $O(0;0)$ và tiếp xúc với $(C).$$3$. Tìm tất cả các điểm trên ($C$) có tọa độ là các số nguyên.

Ngày 06/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số: $y = \frac{3(x + 1)}{x - 2}\,\,\,\,(C)$$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số.$2$. Viết phương trình các đường thẳng đi qua $O(0;0)$ và tiếp xúc với $(C).$$3$. Tìm tất cả các điểm trên ($C$) có tọa độ là các số nguyên. Lời giải $1.$ Bạn đọc tự giải$2.$  Phương trình tiếp tuyến tại điểm $M_0(x_0,y_0)\in (C)$ là$y=-\frac{9}{(x_0-2)^2}(x-x_0)+y_0 … [Đọc thêm...] vềĐề: Cho hàm số: $y = \frac{3(x + 1)}{x – 2}\,\,\,\,(C)$$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số.$2$. Viết phương trình các đường thẳng đi qua $O(0;0)$ và tiếp xúc với $(C).$$3$. Tìm tất cả các điểm trên ($C$) có tọa độ là các số nguyên.

Đề: Cho hàm số  \(y = \frac{{{x^2} + x + m}}{{x + 1}}\)$1$. Xác định tất cả các giá trị của tham số $m$ để đồ thị của hàm số có các điểm cực đại, cực tiểu nằm về hai phía của trục tung.$2$. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi $m = 4$.

Ngày 06/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số  \(y = \frac{{{x^2} + x + m}}{{x + 1}}\)$1$. Xác định tất cả các giá trị của tham số $m$ để đồ thị của hàm số có các điểm cực đại, cực tiểu nằm về hai phía của trục tung.$2$. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi $m = 4$. Lời giải $1$.  \(y' = \frac{{{x^2} + 2x + 1 - m}}{{{{\left( {x + 1} \right)}^2}}}\)   Đồ thị có các điểm cực đại, cực … [Đọc thêm...] vềĐề: Cho hàm số  \(y = \frac{{{x^2} + x + m}}{{x + 1}}\)$1$. Xác định tất cả các giá trị của tham số $m$ để đồ thị của hàm số có các điểm cực đại, cực tiểu nằm về hai phía của trục tung.$2$. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi $m = 4$.

Đề: Khảo sát và vẽ đồ thị hàm số $y=x^2-3x-4$

Ngày 06/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Khảo sát và vẽ đồ thị hàm số $y=x^2-3x-4$ Lời giải Giải* Tập xác định $R$* Sự biến thiên:   Ta có: $a=1>0, -\frac{b}{2a}=\frac{3}{2}, -\frac{\Delta}{4a}=-\frac{25}{4}$. Vậy đồ thị hàm số $y=x^2-3x-4$ là parabol có đỉnh $I(\frac{3}{2};-\frac{25}{4})$, nhận đường thẳng $x=\frac{3}{2}$ làm tâm đối xứng và bề lõm hướng lên trên.   Suy ra: Hàm số nghịch biến trên khoảng … [Đọc thêm...] vềĐề: Khảo sát và vẽ đồ thị hàm số $y=x^2-3x-4$

Đề: Cho hàm số \(y = \frac{{{x^2} + 2x + 1}}{{x – 1}}\left( C \right)\)$1$. Khảo sát sự biến thiên và vẽ đồ thị của hàm số$2$. Tìm tất cả các điểm trên trục tung sao cho từ đó có hai tiếp tuyến với đồ thị $(C)$ vuông góc với nhau

Ngày 06/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số \(y = \frac{{{x^2} + 2x + 1}}{{x - 1}}\left( C \right)\)$1$. Khảo sát sự biến thiên và vẽ đồ thị của hàm số$2$. Tìm tất cả các điểm trên trục tung sao cho từ đó có hai tiếp tuyến với đồ thị $(C)$ vuông góc với nhau Lời giải $1$. Bạn đọc tự giải$2$. Xét \(A\left( {0,a} \right)\) trên $Oy$. Đường thẳng qua $A$ với hệ số góc $k$ có phương trình \(y = kx + … [Đọc thêm...] vềĐề: Cho hàm số \(y = \frac{{{x^2} + 2x + 1}}{{x – 1}}\left( C \right)\)$1$. Khảo sát sự biến thiên và vẽ đồ thị của hàm số$2$. Tìm tất cả các điểm trên trục tung sao cho từ đó có hai tiếp tuyến với đồ thị $(C)$ vuông góc với nhau

Đề: Xét hàm số  $y = \frac{{{x^2} + 3x + 3}}{{x + 2}}$                    (1)1) Khảo sát sự biến thiên và vẽ đồ thị hàm số trên, từ đó suy ra đồ thị của hàm số$y = \left| {\frac{{{x^2} + 3x + 3}}{{x + 2}}} \right|$2) Viết phương trình tiếp tuyến với đường cong (1) biết rằng tiếp tuyến này vuông góc với đường thẳng $3y – x + 6 = 0$

Ngày 05/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Xét hàm số  $y = \frac{{{x^2} + 3x + 3}}{{x + 2}}$                    (1)1) Khảo sát sự biến thiên và vẽ đồ thị hàm số trên, từ đó suy ra đồ thị của hàm số$y = \left| {\frac{{{x^2} + 3x + 3}}{{x + 2}}} \right|$2) Viết phương trình tiếp tuyến với đường cong (1) biết rằng tiếp tuyến này vuông góc với đường thẳng $3y - x + 6 = 0$ Lời giải $1)$ Viết lại biểu … [Đọc thêm...] vềĐề: Xét hàm số  $y = \frac{{{x^2} + 3x + 3}}{{x + 2}}$                    (1)1) Khảo sát sự biến thiên và vẽ đồ thị hàm số trên, từ đó suy ra đồ thị của hàm số$y = \left| {\frac{{{x^2} + 3x + 3}}{{x + 2}}} \right|$2) Viết phương trình tiếp tuyến với đường cong (1) biết rằng tiếp tuyến này vuông góc với đường thẳng $3y – x + 6 = 0$

Đề: Cho hàm số \(y = \frac{{{x^2} – x – 1}}{{x + 1}}\)$1$. Khảo sát hàm số đã cho$2$. Một đường thẳng thay đổi song song với đường thẳng \(y = \frac{1}{2}x\), cắt đồ thị của hàm số đã cho tại các điểm $M, N$. tìm quỹ tích trung điểm $I$ của $MN$.$3$. Biện luận theo tham số $m$ số nghiệm của phương trình sau \({x^2} – \left( {1 + m} \right)|x| – m – 1 = 0\)

Ngày 05/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số \(y = \frac{{{x^2} - x - 1}}{{x + 1}}\)$1$. Khảo sát hàm số đã cho$2$. Một đường thẳng thay đổi song song với đường thẳng \(y = \frac{1}{2}x\), cắt đồ thị của hàm số đã cho tại các điểm $M, N$. tìm quỹ tích trung điểm $I$ của $MN$.$3$. Biện luận theo tham số $m$ số nghiệm của phương trình sau \({x^2} - \left( {1 + m} \right)|x| - m - 1 = 0\) Lời … [Đọc thêm...] vềĐề: Cho hàm số \(y = \frac{{{x^2} – x – 1}}{{x + 1}}\)$1$. Khảo sát hàm số đã cho$2$. Một đường thẳng thay đổi song song với đường thẳng \(y = \frac{1}{2}x\), cắt đồ thị của hàm số đã cho tại các điểm $M, N$. tìm quỹ tích trung điểm $I$ của $MN$.$3$. Biện luận theo tham số $m$ số nghiệm của phương trình sau \({x^2} – \left( {1 + m} \right)|x| – m – 1 = 0\)

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 6
  • Trang 7
  • Trang 8
  • Trang 9
  • Trang 10
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.