==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + t\\y = 2 + t\\z = 3 - t\end{array} \right.\) và \(d':d:\left\{ \begin{array}{l}x = 1 + 2t'\\y = - 1 + 2t'\\z = 2 - 2t'\end{array} \right.\). Khẳng định nào sau đây là đúng? A. d song song d' B. d trùng … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + t\\y = 2 + t\\z = 3 – t\end{array} \right.\) và \(d':d:\left\{ \begin{array}{l}x = 1 + 2t'\\y = – 1 + 2t'\\z = 2 – 2t'\end{array} \right.\). Khẳng định nào sau đây là đúng?
Kết quả tìm kiếm cho: ty so
Đề: Trong không gian với hệ tọa độ (Oxyz), có bao nhiêu mặt phẳng đi qua điểm \(A\left( {1;2;3} \right)\) và tạo với các mặt phẳng \(\left( {{\rm{Ox}}y} \right),\left( {Oyx} \right)\) cùng một góc bằng 600?
==== Câu hỏi: Trong không gian với hệ tọa độ (Oxyz), có bao nhiêu mặt phẳng đi qua điểm \(A\left( {1;2;3} \right)\) và tạo với các mặt phẳng \(\left( {{\rm{Ox}}y} \right),\left( {Oyx} \right)\) cùng một góc bằng 600? A. 2 B. 1 C. Vố số D. 4 Hãy chọn trả lời đúng trước khi xem … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ (Oxyz), có bao nhiêu mặt phẳng đi qua điểm \(A\left( {1;2;3} \right)\) và tạo với các mặt phẳng \(\left( {{\rm{Ox}}y} \right),\left( {Oyx} \right)\) cùng một góc bằng 600?
Đề: Trong không gian với hê tọa độ Oxyz cho hai đường thẳng \(d:x – 1 = \frac{y}{2} = z\) và \(d':\left\{ \begin{array}{l}x = 1\\y = 2 – 2t\\z = – 1\end{array} \right.\). Trong các khẳng định sau, khẳng định nào đúng?
==== Câu hỏi: Trong không gian với hê tọa độ Oxyz cho hai đường thẳng \(d:x - 1 = \frac{y}{2} = z\) và \(d':\left\{ \begin{array}{l}x = 1\\y = 2 - 2t\\z = - 1\end{array} \right.\). Trong các khẳng định sau, khẳng định nào đúng? A. Có đúng một đường thẳng cắt và vuông góc với d và d’. B. Có vô số đường thẳng cắt và … [Đọc thêm...] vềĐề: Trong không gian với hê tọa độ Oxyz cho hai đường thẳng \(d:x – 1 = \frac{y}{2} = z\) và \(d':\left\{ \begin{array}{l}x = 1\\y = 2 – 2t\\z = – 1\end{array} \right.\). Trong các khẳng định sau, khẳng định nào đúng?
Đề: Trong không gian toạ độ Oxyz, cho đường thẳng \((d):\left\{ \begin{array}{l}x = 1 + t\\y = 1 – t\\z = 2 + 2t\end{array} \right.,t \in \mathbb{R}\) và mặt phẳng \((P):x + 3y + z + 1 = 0.\) Trong các mệnh đề sau, mệnh đề nào đúng?
==== Câu hỏi: Trong không gian toạ độ Oxyz, cho đường thẳng \((d):\left\{ \begin{array}{l}x = 1 + t\\y = 1 - t\\z = 2 + 2t\end{array} \right.,t \in \mathbb{R}\) và mặt phẳng \((P):x + 3y + z + 1 = 0.\) Trong các mệnh đề sau, mệnh đề nào đúng? A. (d) cắt và không vuông góc với (P) B. (d) nằm trong (P) C. (d) … [Đọc thêm...] vềĐề: Trong không gian toạ độ Oxyz, cho đường thẳng \((d):\left\{ \begin{array}{l}x = 1 + t\\y = 1 – t\\z = 2 + 2t\end{array} \right.,t \in \mathbb{R}\) và mặt phẳng \((P):x + 3y + z + 1 = 0.\) Trong các mệnh đề sau, mệnh đề nào đúng?
Đề: Trong không gian toạ độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l}x = y\\z = – 1\end{array} \right.\) và đường thẳng \(d':\left\{ \begin{array}{l}x = y\\z = 1\end{array} \right..\) Tính khoảng cách giữa hai đường thẳng d và d’.
==== Câu hỏi: Trong không gian toạ độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l}x = y\\z = - 1\end{array} \right.\) và đường thẳng \(d':\left\{ \begin{array}{l}x = y\\z = 1\end{array} \right..\) Tính khoảng cách giữa hai đường thẳng d và d’. A. 1 B. \(\sqrt 2 \) C. 2 D. \(\sqrt 3 … [Đọc thêm...] vềĐề: Trong không gian toạ độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l}x = y\\z = – 1\end{array} \right.\) và đường thẳng \(d':\left\{ \begin{array}{l}x = y\\z = 1\end{array} \right..\) Tính khoảng cách giữa hai đường thẳng d và d’.
Đề: Trong không gian toạ độ Oxyz, cho đường thẳng d có phương trình x=y=z và đường thẳng \(d':\left\{ \begin{array}{l}x + y = 0\\z = 0\end{array} \right..\) Khẳng định nào sau đây là đúng?
==== Câu hỏi: Trong không gian toạ độ Oxyz, cho đường thẳng d có phương trình x=y=z và đường thẳng \(d':\left\{ \begin{array}{l}x + y = 0\\z = 0\end{array} \right..\) Khẳng định nào sau đây là đúng? A. d và d’ trùng nhau B. d và d’ song song C. d và d’ vuông góc và không chéo nhau … [Đọc thêm...] vềĐề: Trong không gian toạ độ Oxyz, cho đường thẳng d có phương trình x=y=z và đường thẳng \(d':\left\{ \begin{array}{l}x + y = 0\\z = 0\end{array} \right..\) Khẳng định nào sau đây là đúng?
Đề: Trong không gian toạ độ Oxyz, cho điểm A(-1;1;1) và hai mặt phẳng \((P): – x + 2y – 3z = 0\) và \((Q):3x – 6y + 9z – 5 = 0.\) Mệnh đề nào sau đây là đúng?
==== Câu hỏi: Trong không gian toạ độ Oxyz, cho điểm A(-1;1;1) và hai mặt phẳng \((P): - x + 2y - 3z = 0\) và \((Q):3x - 6y + 9z - 5 = 0.\) Mệnh đề nào sau đây là đúng? A. Mặt phẳng (P) không đi qua A và song song với (Q) B. Mặt phẳng (P) đi qua A và vuông góc với (Q) C. Mặt phẳng (P) đi qua A và song song … [Đọc thêm...] vềĐề: Trong không gian toạ độ Oxyz, cho điểm A(-1;1;1) và hai mặt phẳng \((P): – x + 2y – 3z = 0\) và \((Q):3x – 6y + 9z – 5 = 0.\) Mệnh đề nào sau đây là đúng?
Đề: Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân và có độ dài các cạnh \(AB = BC = 2,AA' = 2\sqrt 2 \). Thể tích khối cầu ngoại tiếp tứ diện \(AB'A'C\) là:
Câu hỏi: Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân và có độ dài các cạnh \(AB = BC = 2,AA' = 2\sqrt 2 \). Thể tích khối cầu ngoại tiếp tứ diện \(AB'A'C\) là: A. \(\frac{{16\pi }}{3}\) B. \(16\pi \) C. \(\frac{{32\pi }}{3}\) D. \(32\pi \) Hãy chọn trả … [Đọc thêm...] vềĐề: Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân và có độ dài các cạnh \(AB = BC = 2,AA' = 2\sqrt 2 \). Thể tích khối cầu ngoại tiếp tứ diện \(AB'A'C\) là:
Đề: Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với đáy lớn \(AB = 2a,AB = BC = a\). Cạnh bên SA = 2a và vuông góc với mặt phẳng (ABCD). Tính thể tích V của khối cầu ngoại tiếp hình chóp S.ABCD.
Câu hỏi: Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với đáy lớn \(AB = 2a,AB = BC = a\). Cạnh bên SA = 2a và vuông góc với mặt phẳng (ABCD). Tính thể tích V của khối cầu ngoại tiếp hình chóp S.ABCD. A. \(V = \frac{{8\sqrt 2 \pi {a^3}}}{3}.\) B. \(V = \frac{{\sqrt 2 \pi {a^3}}}{2}.\) C. \(V = … [Đọc thêm...] vềĐề: Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với đáy lớn \(AB = 2a,AB = BC = a\). Cạnh bên SA = 2a và vuông góc với mặt phẳng (ABCD). Tính thể tích V của khối cầu ngoại tiếp hình chóp S.ABCD.
Đề: Cho hình chóp tứ giác đều có tất cả các cạnh bằng \(5\sqrt 2 cm.\) Tính thể tích V của khối cầu ngoại tiếp trên.
Câu hỏi: Cho hình chóp tứ giác đều có tất cả các cạnh bằng \(5\sqrt 2 cm.\) Tính thể tích V của khối cầu ngoại tiếp trên. A. \(V = \frac{{250}}{3}c{m^3}. \) B. \(V = 100\pi c{m^3}. \) C. \(V = \frac{{500}}{3}\pi c{m^3}. \) D. \(V = \frac{{125\sqrt 2 }}{3}\pi c{m^3} \) Hãy chọn … [Đọc thêm...] vềĐề: Cho hình chóp tứ giác đều có tất cả các cạnh bằng \(5\sqrt 2 cm.\) Tính thể tích V của khối cầu ngoại tiếp trên.