• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Kết quả tìm kiếm cho: ty so

30. Cho hình chóp \(S.ABCD\)có đáy là hình thang vuông tại \(A\) và \(B\). Biết \(SA\)vuông góc với mặt phẳng đáy \((ABCD)\) và \(SA = AB = BC = a,AD = 2a\). Gọi \(M,\,N\)lần lượt là trung điểm của \(SB,CD\); \(\varphi \) là góc giữa đường thẳng \(MN\)và mặt phẳng \((SAC)\). Tính \(\sin \varphi \).

Ngày 05/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 30. Cho hình chóp \(S.ABCD\)có đáy là hình thang vuông tại \(A\) và \(B\). Biết \(SA\)vuông góc với mặt phẳng đáy \((ABCD)\) và \(SA = AB = BC = a,AD = 2a\). Gọi \(M,\,N\)lần lượt là trung điểm của \(SB,CD\); \(\varphi \) là góc giữa đường thẳng \(MN\)và … [Đọc thêm...] về30. Cho hình chóp \(S.ABCD\)có đáy là hình thang vuông tại \(A\) và \(B\). Biết \(SA\)vuông góc với mặt phẳng đáy \((ABCD)\) và \(SA = AB = BC = a,AD = 2a\). Gọi \(M,\,N\)lần lượt là trung điểm của \(SB,CD\); \(\varphi \) là góc giữa đường thẳng \(MN\)và mặt phẳng \((SAC)\). Tính \(\sin \varphi \).

37. Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N hai điểm thay đổi lần lượt thuộc cạnh BC, BD sao cho luôn vuông góc với mặt phẳng . Gọi , lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của thể tích khối tứ diện. Tính V1 + V2

Ngày 05/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 37. Cho tứ diện đều có cạnh bằng . Gọi , là hai điểm thay đổi lần lượt thuộc cạnh , sao cho luôn vuông góc với mặt phẳng . Gọi , lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của thể tích khối tứ diện . Tính . A. B. C. D. Lời … [Đọc thêm...] về37. Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N hai điểm thay đổi lần lượt thuộc cạnh BC, BD sao cho luôn vuông góc với mặt phẳng . Gọi , lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của thể tích khối tứ diện. Tính V1 + V2

8. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh bên \(SA\) vuông góc với đáy và \(SA = a\). Gọi \(M,\,N\) lần lượt là trung điểm của các cạnh \(BC\) và \(SD\), \(\alpha \) là góc giữa đường thẳng \(MN\) và mặt phẳng \(\left( {SAC} \right)\). Giá trị \(\tan \alpha \) là:

Ngày 05/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 8. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh bên \(SA\) vuông góc với đáy và \(SA = a\). Gọi \(M,\,N\) lần lượt là trung điểm của các cạnh \(BC\) và \(SD\), \(\alpha \) là góc giữa đường thẳng \(MN\) và mặt phẳng \(\left( … [Đọc thêm...] về8. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh bên \(SA\) vuông góc với đáy và \(SA = a\). Gọi \(M,\,N\) lần lượt là trung điểm của các cạnh \(BC\) và \(SD\), \(\alpha \) là góc giữa đường thẳng \(MN\) và mặt phẳng \(\left( {SAC} \right)\). Giá trị \(\tan \alpha \) là:

14. Cho hình lăng trụ tam giác đều \(ABC.A’B’C’\) có độ dài cạnh đáy bằng \(a\). Gọi \(\varphi \) là góc giữa đường thẳng \(BC’\) và mặt phẳng \(\left( {A’BC} \right)\). Khi \(\sin \varphi \) đạt giá trị lớn nhất, tính thể tích của khối lăng trụ đã cho.

Ngày 05/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 14. Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có độ dài cạnh đáy bằng \(a\). Gọi \(\varphi \) là góc giữa đường thẳng \(BC'\) và mặt phẳng \(\left( {A'BC} \right)\). Khi \(\sin \varphi \) đạt giá trị lớn nhất, tính thể tích của khối lăng trụ đã … [Đọc thêm...] về14. Cho hình lăng trụ tam giác đều \(ABC.A’B’C’\) có độ dài cạnh đáy bằng \(a\). Gọi \(\varphi \) là góc giữa đường thẳng \(BC’\) và mặt phẳng \(\left( {A’BC} \right)\). Khi \(\sin \varphi \) đạt giá trị lớn nhất, tính thể tích của khối lăng trụ đã cho.

5. Cho hình chóp \(S.ABCD\)có đáy là hình thang vuông tại \(A\) và \(D\), \(CD = a\); \(AB = AD = 2a\). Tam giác \(SAD\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy. Mặt phẳng \(\left( {SBC} \right)\) tạo với đáy một góc \(60^\circ \). Gọi \(E\) là trung điểm cạnh \(AB\). Tính bán kính mặt cầu ngoại tiếp khối chóp\(S.EBC\).

Ngày 04/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 5. Cho hình chóp \(S.ABCD\)có đáy là hình thang vuông tại \(A\) và \(D\), \(CD = a\); \(AB = AD = 2a\). Tam giác \(SAD\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy. Mặt phẳng \(\left( {SBC} \right)\) tạo với đáy một góc \(60^\circ \). Gọi \(E\) … [Đọc thêm...] về5. Cho hình chóp \(S.ABCD\)có đáy là hình thang vuông tại \(A\) và \(D\), \(CD = a\); \(AB = AD = 2a\). Tam giác \(SAD\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy. Mặt phẳng \(\left( {SBC} \right)\) tạo với đáy một góc \(60^\circ \). Gọi \(E\) là trung điểm cạnh \(AB\). Tính bán kính mặt cầu ngoại tiếp khối chóp\(S.EBC\).

27. Cho hình chóp \(S.ABCD\), có đáy \(ABCD\) là hình thoi cạnh \(a\), \(\widehat {ABC} = 60^\circ \), \(SA = SB = SC = a\). \(M\) là trung điểm của \(SD\). Tính \(\sin \varphi \), với \(\varphi  = \left( {\widehat {\left( {SBC} \right),\,\left( {MAC} \right)}} \right)\).

Ngày 04/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 27. Cho hình chóp \(S.ABCD\), có đáy \(ABCD\) là hình thoi cạnh \(a\), \(\widehat {ABC} = 60^\circ \), \(SA = SB = SC = a\). \(M\) là trung điểm của \(SD\). Tính \(\sin \varphi \), với \(\varphi  = \left( {\widehat {\left( {SBC} \right),\,\left( {MAC} … [Đọc thêm...] về27. Cho hình chóp \(S.ABCD\), có đáy \(ABCD\) là hình thoi cạnh \(a\), \(\widehat {ABC} = 60^\circ \), \(SA = SB = SC = a\). \(M\) là trung điểm của \(SD\). Tính \(\sin \varphi \), với \(\varphi  = \left( {\widehat {\left( {SBC} \right),\,\left( {MAC} \right)}} \right)\).

18. Cho hình chóp \(S.ABCD\) có đáy là hình bình hành, thể tích là \(V\). Gọi \(M,\,N,\,P,\,Q\) lần lượt là trọng tâm các mặt \(SAB,SBC,\,SCD,\,SDA\) của hình chóp; \(O\) là giao điểm của \(AC,\,BD\). Tính theo \(V\) thể tích khối chóp \(O.MNQ\).

Ngày 04/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 18. Cho hình chóp \(S.ABCD\) có đáy là hình bình hành, thể tích là \(V\). Gọi \(M,\,N,\,P,\,Q\) lần lượt là trọng tâm các mặt \(SAB,SBC,\,SCD,\,SDA\) của hình chóp; \(O\) là giao điểm của \(AC,\,BD\). Tính theo \(V\) thể tích khối chóp \(O.MNQ\). Lời … [Đọc thêm...] về18. Cho hình chóp \(S.ABCD\) có đáy là hình bình hành, thể tích là \(V\). Gọi \(M,\,N,\,P,\,Q\) lần lượt là trọng tâm các mặt \(SAB,SBC,\,SCD,\,SDA\) của hình chóp; \(O\) là giao điểm của \(AC,\,BD\). Tính theo \(V\) thể tích khối chóp \(O.MNQ\).

32. Cho hình chóp đều \(S.ABC\) có cạnh đáy bằng \(a\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(AB\), \(BC\) và \(P\) là điểm thuộc tia đối của \(SC\) sao cho \(SC = 3SP\). Biết rằng trong các mặt cầu đi qua ba điểm \(A\), \(M\), \(N\) thì mặt cầu ngoại tiếp tứ diện \(AMNP\) có bán kính nhỏ nhất. Tính khoảng cách từ \(S\) đến \(\left( {ABC} \right)\).

Ngày 04/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 32. Cho hình chóp đều \(S.ABC\) có cạnh đáy bằng \(a\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(AB\), \(BC\) và \(P\) là điểm thuộc tia đối của \(SC\) sao cho \(SC = 3SP\). Biết rằng trong các mặt cầu đi qua ba điểm \(A\), \(M\), \(N\) thì mặt cầu … [Đọc thêm...] về32. Cho hình chóp đều \(S.ABC\) có cạnh đáy bằng \(a\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(AB\), \(BC\) và \(P\) là điểm thuộc tia đối của \(SC\) sao cho \(SC = 3SP\). Biết rằng trong các mặt cầu đi qua ba điểm \(A\), \(M\), \(N\) thì mặt cầu ngoại tiếp tứ diện \(AMNP\) có bán kính nhỏ nhất. Tính khoảng cách từ \(S\) đến \(\left( {ABC} \right)\).

16. Cho hình lăng trụ tam giác \(ABC.A’B’C’\), biết hình chóp \(A’.ABC\) là hình chóp tam giác đều cạnh bằng \(a\), \(\left( {A’BC} \right) \bot \left( {AB’C’} \right)\). Tính thể tích khối lăng trụ \(ABC.A’B’C’\) theo \(a\).

Ngày 04/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 16. Cho hình lăng trụ tam giác \(ABC.A'B'C'\), biết hình chóp \(A'.ABC\) là hình chóp tam giác đều cạnh bằng \(a\), \(\left( {A'BC} \right) \bot \left( {AB'C'} \right)\). Tính thể tích khối lăng trụ \(ABC.A'B'C'\) theo \(a\). Lời giải Ta có … [Đọc thêm...] về16. Cho hình lăng trụ tam giác \(ABC.A’B’C’\), biết hình chóp \(A’.ABC\) là hình chóp tam giác đều cạnh bằng \(a\), \(\left( {A’BC} \right) \bot \left( {AB’C’} \right)\). Tính thể tích khối lăng trụ \(ABC.A’B’C’\) theo \(a\).

2. Cho hình chóp \(S.ABCD\) đáy \(ABCD\) là hình chữ nhật. \(AB = a\), \(AD = 2a\). Cạnh bên \(SA\) vuông góc với đáy \(ABCD\), \(SA = 2a\). Tính giá trị \(\tan \) góc giữa hai mặt phẳng \(\left( {SCB} \right)\) và \(\left( {SCD} \right)\).

Ngày 04/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 2. Cho hình chóp \(S.ABCD\) đáy \(ABCD\) là hình chữ nhật. \(AB = a\), \(AD = 2a\). Cạnh bên \(SA\) vuông góc với đáy \(ABCD\), \(SA = 2a\). Tính giá trị \(\tan \) góc giữa hai mặt phẳng \(\left( {SCB} \right)\) và \(\left( {SCD} \right)\). Lời … [Đọc thêm...] về2. Cho hình chóp \(S.ABCD\) đáy \(ABCD\) là hình chữ nhật. \(AB = a\), \(AD = 2a\). Cạnh bên \(SA\) vuông góc với đáy \(ABCD\), \(SA = 2a\). Tính giá trị \(\tan \) góc giữa hai mặt phẳng \(\left( {SCB} \right)\) và \(\left( {SCD} \right)\).

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 399
  • Trang 400
  • Trang 401
  • Trang 402
  • Trang 403
  • Interim pages omitted …
  • Trang 703
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.