DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 33. Cho hình chóp \(S.ABC\)có \(\widehat {SAB} = \widehat {ABC} = \widehat {BCS} = {90^0},AB = a,BC = a\sqrt 3 \) và góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABC} \right)\) bằng \({45^0}\). Gọi \(M\) là trung điểm \(BC\). Tính khoảng cách giữa … [Đọc thêm...] về33. Cho hình chóp \(S.ABC\)có \(\widehat {SAB} = \widehat {ABC} = \widehat {BCS} = {90^0},AB = a,BC = a\sqrt 3 \) và góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABC} \right)\) bằng \({45^0}\). Gọi \(M\) là trung điểm \(BC\). Tính khoảng cách giữa hai đường thẳng \(AM\) và \(SC\).
Kết quả tìm kiếm cho: ty so
7. Cho hình hộp \(ABCD.A’B’C’D’\) có đáy là hình thoi cạnh \(a\), góc \(\widehat {ADC} = 120^\circ \), mặt bên \(DCC’D’\) là hình chữ nhật và tạo với đáy góc \(60^\circ \). Gọi \(M,\,N,\,P,\,K\) lần lượt là trung điểm của \(AB,\,A’D’,\,CC’,\,BB’\). Cho biết \(AA’ = 2a\), hãy tính thể tích khối đa diện \(MNPKA’\).
DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 7. Cho hình hộp \(ABCD.A'B'C'D'\) có đáy là hình thoi cạnh \(a\), góc \(\widehat {ADC} = 120^\circ \), mặt bên \(DCC'D'\) là hình chữ nhật và tạo với đáy góc \(60^\circ \). Gọi \(M,\,N,\,P,\,K\) lần lượt là trung điểm của \(AB,\,A'D',\,CC',\,BB'\). Cho … [Đọc thêm...] về7. Cho hình hộp \(ABCD.A’B’C’D’\) có đáy là hình thoi cạnh \(a\), góc \(\widehat {ADC} = 120^\circ \), mặt bên \(DCC’D’\) là hình chữ nhật và tạo với đáy góc \(60^\circ \). Gọi \(M,\,N,\,P,\,K\) lần lượt là trung điểm của \(AB,\,A’D’,\,CC’,\,BB’\). Cho biết \(AA’ = 2a\), hãy tính thể tích khối đa diện \(MNPKA’\).
24. Cho tứ diện \(ABCD\) có tam giác \(ABC\) đều cạnh \(a\), \(DA = DB = \frac{{a\sqrt 3 }}{3}\),\(CD \bot AD\). Trên cạnh \(CD\) kéo dài lấy điểm \(E\) sao cho \(\widehat {AEB} = 90^\circ \). Tính thể tích \(V\) của khối tứ diện \(EABC\).
DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 24. Cho tứ diện \(ABCD\) có tam giác \(ABC\) đều cạnh \(a\), \(DA = DB = \frac{{a\sqrt 3 }}{3}\),\(CD \bot AD\). Trên cạnh \(CD\) kéo dài lấy điểm \(E\) sao cho \(\widehat {AEB} = 90^\circ \). Tính thể tích \(V\) của khối tứ diện \(EABC\). A. … [Đọc thêm...] về24. Cho tứ diện \(ABCD\) có tam giác \(ABC\) đều cạnh \(a\), \(DA = DB = \frac{{a\sqrt 3 }}{3}\),\(CD \bot AD\). Trên cạnh \(CD\) kéo dài lấy điểm \(E\) sao cho \(\widehat {AEB} = 90^\circ \). Tính thể tích \(V\) của khối tứ diện \(EABC\).
1. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Gọi \(H\) là trung điểm \(AB\), \(SH = a\) và \(SH \bot \left( {ABCD} \right)\). Tính \(\varphi \) là góc giữa \(\left( {SAC} \right)\) và \(\left( {SBC} \right)\).
DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 1. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Gọi \(H\) là trung điểm \(AB\), \(SH = a\) và \(SH \bot \left( {ABCD} \right)\). Tính \(\varphi \) là góc giữa \(\left( {SAC} \right)\) và \(\left( {SBC} \right)\). Lời giải Cách … [Đọc thêm...] về1. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Gọi \(H\) là trung điểm \(AB\), \(SH = a\) và \(SH \bot \left( {ABCD} \right)\). Tính \(\varphi \) là góc giữa \(\left( {SAC} \right)\) và \(\left( {SBC} \right)\).
36. Cho hình hộp \(ABCD.A’B’C’D’\) có thể tích bằng \(V\). Gọi \(M,\,N,\,P\) lần lượt là trung điểm của các cạnh \(AB\), \(A’C’\), \(BB’\). Tính thể tích khối tứ diện \(CMNP\).
DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 36. Cho hình hộp \(ABCD.A'B'C'D'\) có thể tích bằng \(V\). Gọi \(M,\,N,\,P\) lần lượt là trung điểm của các cạnh \(AB\), \(A'C'\), \(BB'\). Tính thể tích khối tứ diện \(CMNP\). A. \(\frac{V}{8}\). B. \(\frac{{7V}}{{48}}\). C. … [Đọc thêm...] về36. Cho hình hộp \(ABCD.A’B’C’D’\) có thể tích bằng \(V\). Gọi \(M,\,N,\,P\) lần lượt là trung điểm của các cạnh \(AB\), \(A’C’\), \(BB’\). Tính thể tích khối tứ diện \(CMNP\).
22. Cho hình hộp \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có tất cả các cạnh bằng \(a\). \(\widehat {BCD} = \widehat {{A_1}{D_1}D} = \widehat {B{B_1}{A_1}} = 60^\circ \). Khoảng cách giữa hai đường thẳng \({A_1}D\) và \(C{D_1}\) bằng:
DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 22. Cho hình hộp \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có tất cả các cạnh bằng \(a\). \(\widehat {BCD} = \widehat {{A_1}{D_1}D} = \widehat {B{B_1}{A_1}} = 60^\circ \). Khoảng cách giữa hai đường thẳng \({A_1}D\) và \(C{D_1}\) bằng: A. \(\frac{{a\sqrt 3 … [Đọc thêm...] về22. Cho hình hộp \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có tất cả các cạnh bằng \(a\). \(\widehat {BCD} = \widehat {{A_1}{D_1}D} = \widehat {B{B_1}{A_1}} = 60^\circ \). Khoảng cách giữa hai đường thẳng \({A_1}D\) và \(C{D_1}\) bằng:
34. Cho khối chóp \(S.ABCD\) có chiều cao bằng 9 và đáy là hình bình hành có diện tích bằng 90. Gọi \(M,\,N,\,P,\,Q\) lần lượt là trọng tâm các mặt bên \(SAB,\,SBC,\,SCD\) và \(SDA\). Thể tích khối đa diện lồi có đỉnh là các điểm \(M,\,N,\,P,\,Q,\,B\,\) và \(D\) bằng.
DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 34. Cho khối chóp \(S.ABCD\) có chiều cao bằng 9 và đáy là hình bình hành có diện tích bằng 90. Gọi \(M,\,N,\,P,\,Q\) lần lượt là trọng tâm các mặt bên \(SAB,\,SBC,\,SCD\) và \(SDA\). Thể tích khối đa diện lồi có đỉnh là các điểm \(M,\,N,\,P,\,Q,\,B\,\) và … [Đọc thêm...] về34. Cho khối chóp \(S.ABCD\) có chiều cao bằng 9 và đáy là hình bình hành có diện tích bằng 90. Gọi \(M,\,N,\,P,\,Q\) lần lượt là trọng tâm các mặt bên \(SAB,\,SBC,\,SCD\) và \(SDA\). Thể tích khối đa diện lồi có đỉnh là các điểm \(M,\,N,\,P,\,Q,\,B\,\) và \(D\) bằng.
13. Cho hình hộp \(ABCD.A’B’C’D’\) các điểm \(I,\,K\) thỏa mãn: \(\overrightarrow {ID’} + 2\overrightarrow {IA’} = \overrightarrow 0 \,\), \(\overrightarrow {KA} + 3\overrightarrow {KD} = \overrightarrow 0 \,\), \(E\) là giao điểm của \(CD’\) và \(C’D\), \(M\) là trung điểm của \(CD\). Tam giác \(ABC\) là tam giác đều cạnh \(a\), mặt phẳng \(\left( {IBD} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Diện tích tam giác \(IBD\) bằng \(6{a^2}\sqrt 3 \). Gọi \(G;\,G’\) lần lượt là trọng tâm tứ diện \(MBB’A’\) và \(\Delta AIE\). Khoảng cách giữa hai đường thẳng \(GG’\) và \(CK\) bằng
DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 13. Cho hình hộp \(ABCD.A'B'C'D'\) các điểm \(I,\,K\) thỏa mãn: \(\overrightarrow {ID'} + 2\overrightarrow {IA'} = \overrightarrow 0 \,\), \(\overrightarrow {KA} + 3\overrightarrow {KD} = \overrightarrow 0 \,\), \(E\) là giao điểm … [Đọc thêm...] về13. Cho hình hộp \(ABCD.A’B’C’D’\) các điểm \(I,\,K\) thỏa mãn: \(\overrightarrow {ID’} + 2\overrightarrow {IA’} = \overrightarrow 0 \,\), \(\overrightarrow {KA} + 3\overrightarrow {KD} = \overrightarrow 0 \,\), \(E\) là giao điểm của \(CD’\) và \(C’D\), \(M\) là trung điểm của \(CD\). Tam giác \(ABC\) là tam giác đều cạnh \(a\), mặt phẳng \(\left( {IBD} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Diện tích tam giác \(IBD\) bằng \(6{a^2}\sqrt 3 \). Gọi \(G;\,G’\) lần lượt là trọng tâm tứ diện \(MBB’A’\) và \(\Delta AIE\). Khoảng cách giữa hai đường thẳng \(GG’\) và \(CK\) bằng
28. Cho hình chóp \(S.ABCD\)có đáy là hình thang với hai đáy\(AB//CD\), biết \(AB = 2a;AD = CD = CB = a,\)\(\widehat {SAD} = \widehat {SBD} = 90^\circ \)và góc giữa hai mặt phẳng \(\left( {SAD} \right)\), \(\left( {SBD} \right)\) bằng \(\alpha \)sao cho \(\cos \alpha = \frac{1}{{\sqrt 5 }}.\)Thể tích \(V\)của khối chóp \(S.ABC\)là
DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 28. Cho hình chóp \(S.ABCD\)có đáy là hình thang với hai đáy\(AB//CD\), biết \(AB = 2a;AD = CD = CB = a,\)\(\widehat {SAD} = \widehat {SBD} = 90^\circ \)và góc giữa hai mặt phẳng \(\left( {SAD} \right)\), \(\left( {SBD} \right)\) bằng \(\alpha \)sao cho … [Đọc thêm...] về28. Cho hình chóp \(S.ABCD\)có đáy là hình thang với hai đáy\(AB//CD\), biết \(AB = 2a;AD = CD = CB = a,\)\(\widehat {SAD} = \widehat {SBD} = 90^\circ \)và góc giữa hai mặt phẳng \(\left( {SAD} \right)\), \(\left( {SBD} \right)\) bằng \(\alpha \)sao cho \(\cos \alpha = \frac{1}{{\sqrt 5 }}.\)Thể tích \(V\)của khối chóp \(S.ABC\)là
23. Cho khối chóp \(S.ABC\), đáy là tam giác \(ABC\) có \(AC = 5a,\)\(AB = 4a,\,\)\(\widehat {BAC} = {60^{\rm{o}}},\)\(\widehat {SBA} = \widehat {SCA} = {90^{\rm{o}}}\). Góc giữa \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) bằng \({60^{\rm{o}}}\). Thể tích của khối chóp đã cho bằng
DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 23. Cho khối chóp \(S.ABC\), đáy là tam giác \(ABC\) có \(AC = 5a,\)\(AB = 4a,\,\)\(\widehat {BAC} = {60^{\rm{o}}},\)\(\widehat {SBA} = \widehat {SCA} = {90^{\rm{o}}}\). Góc giữa \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) bằng \({60^{\rm{o}}}\). … [Đọc thêm...] về23. Cho khối chóp \(S.ABC\), đáy là tam giác \(ABC\) có \(AC = 5a,\)\(AB = 4a,\,\)\(\widehat {BAC} = {60^{\rm{o}}},\)\(\widehat {SBA} = \widehat {SCA} = {90^{\rm{o}}}\). Góc giữa \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) bằng \({60^{\rm{o}}}\). Thể tích của khối chóp đã cho bằng