• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Kết quả tìm kiếm cho: ty+so

Đề bài: Cho $a_{i},b_{i},c_{i}>0(i=1,2,3…,n)$$A=\sum\limits_{i=1}^n a_{i}, B=\sum\limits_{i=1}^n b_{i},C=\sum\limits_{i=1}^n c_{i}$Chứng minh rằng:$ Min(a_{1}b_{1}c_{1},a_{2}b_{2}c_{2},…,a_{n}b_{n}c_{n})\leq \frac{ABC}{n^{3}}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $a_{i},b_{i},c_{i}>0(i=1,2,3...,n)$$A=\sum\limits_{i=1}^n a_{i}, B=\sum\limits_{i=1}^n b_{i},C=\sum\limits_{i=1}^n c_{i}$Chứng minh rằng:$ Min(a_{1}b_{1}c_{1},a_{2}b_{2}c_{2},...,a_{n}b_{n}c_{n})\leq \frac{ABC}{n^{3}}$ Lời giải Đề bài: Cho $a_{i},b_{i},c_{i}>0(i=1,2,3...,n)$$A=\sum\limits_{i=1}^n a_{i}, B=\sum\limits_{i=1}^n … [Đọc thêm...] vềĐề bài: Cho $a_{i},b_{i},c_{i}>0(i=1,2,3…,n)$$A=\sum\limits_{i=1}^n a_{i}, B=\sum\limits_{i=1}^n b_{i},C=\sum\limits_{i=1}^n c_{i}$Chứng minh rằng:$ Min(a_{1}b_{1}c_{1},a_{2}b_{2}c_{2},…,a_{n}b_{n}c_{n})\leq \frac{ABC}{n^{3}}$

Đề bài: Cho $a,b,c>0$.Hãy chứng minh:$\frac{1}{a^{2}+bc}+\frac{1}{b^{2}+ca}+\frac{1}{c^{2}+ab} \leq \frac{a+b+c}{2abc}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Côsi

Đề bài: Cho $a,b,c>0$.Hãy chứng minh:$\frac{1}{a^{2}+bc}+\frac{1}{b^{2}+ca}+\frac{1}{c^{2}+ab} \leq \frac{a+b+c}{2abc}$ Lời giải Đề bài: Cho $a,b,c>0$.Hãy chứng minh:$\frac{1}{a^{2}+bc}+\frac{1}{b^{2}+ca}+\frac{1}{c^{2}+ab} \leq \frac{a+b+c}{2abc}$ Lời giải Áp dụng BĐT … [Đọc thêm...] vềĐề bài: Cho $a,b,c>0$.Hãy chứng minh:$\frac{1}{a^{2}+bc}+\frac{1}{b^{2}+ca}+\frac{1}{c^{2}+ab} \leq \frac{a+b+c}{2abc}$

Đề bài: Chứng minh rằng nếu $0 < b < a$ thì $\frac{{a - b}}{a} < \ln \frac{a}{b} < \frac{{a - b}}{b}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Chứng minh rằng nếu $0 < b < a$ thì $\frac{{a - b}}{a} < \ln \frac{a}{b} < \frac{{a - b}}{b}$ Lời giải Đề bài: Chứng minh rằng nếu $0 < b < a$ thì $\frac{{a - b}}{a} < \ln \frac{a}{b} < \frac{{a - b}}{b}$ Lời giải Bất đẳng thức cần chứng minh tương đương với :$1 - \frac{b}{a} Xét hàm … [Đọc thêm...] vềĐề bài: Chứng minh rằng nếu $0 < b < a$ thì $\frac{{a - b}}{a} < \ln \frac{a}{b} < \frac{{a - b}}{b}$

Đề bài: Chứng minh rằng nếu $0

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Chứng minh rằng nếu $0 Lời giải Đề bài: Chứng minh rằng nếu $0 Lời giải Bất đẳng thức cần chứng minh có dạng: $\frac{1}{a}Xét hàm số $f(x)=\ln x$ với $x>0$. Hàm số này liên tục và có đạo hàm $f'(x)=\frac{1}{x} $ trên $(0;+\infty  )$. Xét trên đoạn $[b;a]$, theo định lí La-grăng.$\exists … [Đọc thêm...] vềĐề bài: Chứng minh rằng nếu $0

Đề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$ Lời giải Đề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$ Lời giải Xét hàm số $g(t)=\sqrt{t }-\ln t$ trên khoảng $(0;+\infty  )$Ta có $g'(t)=\frac{1}{2\sqrt{ t} }-\frac{1}{t}=\frac{\sqrt{ t}-2 }{2t}$Lập bảng biến thiên ta … [Đọc thêm...] vềĐề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$

Đề bài: Chứng minh rằng nếu $0 < b < a$ thì $\frac{{a - b}}{a} < \ln \frac{a}{b} < \frac{{a - b}}{b}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Chứng minh rằng nếu $0 < b < a$ thì $\frac{{a - b}}{a} < \ln \frac{a}{b} < \frac{{a - b}}{b}$ Lời giải Đề bài: Chứng minh rằng nếu $0 < b < a$ thì $\frac{{a - b}}{a} < \ln \frac{a}{b} < \frac{{a - b}}{b}$ Lời giải Bất đẳng thức cần chứng minh tương đương với :$1 - \frac{b}{a} Xét hàm … [Đọc thêm...] vềĐề bài: Chứng minh rằng nếu $0 < b < a$ thì $\frac{{a - b}}{a} < \ln \frac{a}{b} < \frac{{a - b}}{b}$

Đề bài: Chứng minh rằng nếu $0

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Chứng minh rằng nếu $0 Lời giải Đề bài: Chứng minh rằng nếu $0 Lời giải Bất đẳng thức cần chứng minh có dạng: $\frac{1}{a}Xét hàm số $f(x)=\ln x$ với $x>0$. Hàm số này liên tục và có đạo hàm $f'(x)=\frac{1}{x} $ trên $(0;+\infty  )$. Xét trên đoạn $[b;a]$, theo định lí La-grăng.$\exists … [Đọc thêm...] vềĐề bài: Chứng minh rằng nếu $0

Đề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Ứng dụng hàm số để chứng minh Bất đẳng thức

Đề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$ Lời giải Đề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$ Lời giải Xét hàm số $g(t)=\sqrt{t }-\ln t$ trên khoảng $(0;+\infty  )$Ta có $g'(t)=\frac{1}{2\sqrt{ t} }-\frac{1}{t}=\frac{\sqrt{ t}-2 }{2t}$Lập bảng biến thiên ta … [Đọc thêm...] vềĐề bài: Chứng minh rằng $\sqrt{t}>\ln \sqrt{t}$ với $t>0$

Đề bài: Chứng minh rằng : $b(a+1) \leq  e^a + b. \ln b, \forall a,b \geq 1$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh rằng : $b(a+1) \leq  e^a + b. \ln b, \forall a,b \geq 1$ Lời giải Đề bài: Chứng minh rằng : $b(a+1) \leq  e^a + b. \ln b, \forall a,b \geq 1$ Lời giải Xét hàm số $ y = \ln x , x \geq 1 $ thì hàm số ngược của nó là $x=e^y$Từ đồ thị , ta có : $S_1+S_2 \geq S{OBCA} … [Đọc thêm...] vềĐề bài: Chứng minh rằng : $b(a+1) \leq  e^a + b. \ln b, \forall a,b \geq 1$

Đề bài: 1)    Chứng minh $x^2+2xy+3y^2+2x+6y+3\geq 0$ đúng với $\forall x,y$2)    Tìm $m$ để $9x^2+20y^2+4z^2-12xy+6xz+myz\geq 0$ đúng với $\forall x,y,z$3)    Giả sử $a > b > c$, chứng minh: $(x + a + b + c)^2 > 8(bx  +  ac)$ đúng với $\forall x$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: 1)    Chứng minh $x^2+2xy+3y^2+2x+6y+3\geq 0$ đúng với $\forall x,y$2)    Tìm $m$ để $9x^2+20y^2+4z^2-12xy+6xz+myz\geq 0$ đúng với $\forall x,y,z$3)    Giả sử $a > b > c$, chứng minh: $(x + a + b + c)^2 > 8(bx  +  ac)$ đúng với $\forall x$ Lời giải Đề bài: 1)    Chứng minh $x^2+2xy+3y^2+2x+6y+3\geq 0$ đúng với $\forall x,y$2)    Tìm $m$ để … [Đọc thêm...] vềĐề bài: 1)    Chứng minh $x^2+2xy+3y^2+2x+6y+3\geq 0$ đúng với $\forall x,y$2)    Tìm $m$ để $9x^2+20y^2+4z^2-12xy+6xz+myz\geq 0$ đúng với $\forall x,y,z$3)    Giả sử $a > b > c$, chứng minh: $(x + a + b + c)^2 > 8(bx  +  ac)$ đúng với $\forall x$

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 657
  • Trang 658
  • Trang 659
  • Trang 660
  • Trang 661
  • Interim pages omitted …
  • Trang 745
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.