• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = \frac{{x – 3}}{{\sqrt {{x^2} + m} }}\) có 3 tiệm cận. Tìm số phần tử của \(S\).

Đăng ngày: 02/10/2021 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận thông hiểu

adsense

Gọi (S) là tập hợp tất cả các giá trị thực của tham số (m) để đồ thị hàm số (y = frac{{x - 3}}{{sqrt {{x^2} + m} }}) có 3 tiệm cận. Tìm số phần tử của (S).</p> 1
Câu hỏi:
Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = \frac{{x – 3}}{{\sqrt {{x^2} + m} }}\) có 3 tiệm cận. Tìm số phần tử của \(S\).

A. Vô số.

B. \(1\).

C. \(3\).

D. \(2\).

Lời giải

Ta có: \(\mathop {\lim }\limits_{x \to – \infty } \frac{{x – 3}}{{\sqrt {{x^2} + m} }} = \mathop {\lim }\limits_{x \to – \infty } \frac{{1 – \frac{3}{x}}}{{ – \sqrt {1 + \frac{m}{{{x^2}}}} }} = – 1\) và \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x – 3}}{{\sqrt {{x^2} + m} }} = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 – \frac{3}{x}}}{{\sqrt {1 + \frac{m}{{{x^2}}}} }} = 1\)

adsense

Do đó, đồ thị hàm số luôn có 2 tiệm cận ngang là \(y = – 1\); \(y = 1\).

Để đồ thị hàm số có 3 tiệm cận thì chỉ cần có thêm 1 tiệm cận đứng.

Trường hợp 1: \({x^2} + m = 0\) có nghiệm kép khác \(3\), nên \(m = 0\).

Trường hợp 2: \({x^2} + m = 0\) có 2 nghiệm phân biệt, trong đó có 1 nghiệm \({x_1} = 3\), nghiệm \({x_2} \ne 3\)Vì\({x_1} = 3 \Rightarrow {3^2} + m = 0 \Leftrightarrow m = – 9 \Rightarrow {x_2} = – 3\)

Suy ra \(m = – 9\).

Vậy có 2 giá trị của \(m\) thỏa ycbt.

=======
Thuộc mục: Trắc nghiệm Tiệm cận

Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận thông hiểu

Bài liên quan:

  1. Biết đồ thị hàm số \(y = \frac{{\sqrt {3x – 5} + ax + b}}{{{{\left( {x – 2} \right)}^2}}}\) không có tiệm cận đứng. Khi đó \(4a – b\) bằng:

  2. Tìm tất cả các giá trị của tham số \(m\) để đồ thị hàm số \(y = \frac{x}{{\left| x \right| – m}}\) có đúng bốn đường tiệm cận.

  3. Tìm tất cả các giá trị của tham số \(m\)để đồ thị hàm số \(y = \frac{{2x + 1}}{{\sqrt {m{x^2} + 1} }}\) có hai đường tiệm cận ngang.

  4. Xác định \(m\) để đồ thị hàm số \(y = \frac{{{x^2} – \left( {2m + 3} \right)x + 2\left( {m – 1} \right)}}{{x – 2}}\) không có tiệm cận đứng.

  5. Cho hàm số \(y = f(x) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình bên dưới.

    Hỏi đồ thị hàm số \(y = g\left( x \right) = \frac{{2x}}{{f\left( x \right)}}\) có bao nhiêu đường tiệm cận đứng?

  6. Cho hàm số \(f\left( x \right) = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ. Hỏi đồ thị hàm số \(g\left( x \right) = \frac{{2018x}}{{f\left( x \right)\left( {f\left( x \right) – 1} \right)}}\) có bao nhiêu đường tiệm cận?

  7. Cho hàm số \(y = \frac{{x + 2}}{{x – 2}}\) có đồ thị \(\left( C \right)\). Tìm tọa độ điểm M có hoành độ dương thuộc \(\left( C \right)\) sao cho tổng khoảng cách từ M đến hai đường tiệm cận nhỏ nhất.

  8. Đề: Tìm tất cả các đường tiệm cận của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 3}  – 2}}{{{x^2} – 1}}.\)
  9. Đề: Tìm số đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{ – 2x – 1}}{{\sqrt {{x^2} + x + 5} }}.\)
  10. Đề: Tìm tất cả các đường tiệm cận của đồ thị hàm số \(y = \frac{{{x^2} – 3x + 2}}{{{x^3} – 1}}.\)
  11. Đề: Tìm số đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{4{\rm{x}} – 1 – \sqrt {{x^2} + 2{\rm{x}} + 6} }}{{{x^2} + x – 2}}.\)
  12. Đề: Tìm tất cả các tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + 2x – 3}}{{{x^2} – 4x + 3}}.\)
  13. Đề: Đồ thị hàm số \(y = \frac{{2x + \sqrt {{x^2} + 2x + 3} }}{{{x^3} + x}}\) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
  14. Đề:  Đồ thị hàm số \(y = \frac{{2x – 1}}{{\sqrt {{x^2} + x + 2} }}\) có bao nhiêu đường đường tiệm cận (bao gồm tiệm cận đứng và tiệm cận ngang).
  15. Đề: Tìm phương trình đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{3x + 2}}{{x + 1}}.\)

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.