• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Bài tập Hàm số / Đề: Tìm giá trị lớn nhất của biểu thức hàm số $f(x)=|\sqrt{x^2-2x+5}-\sqrt{x^2-12x+136}|$

Đề: Tìm giá trị lớn nhất của biểu thức hàm số $f(x)=|\sqrt{x^2-2x+5}-\sqrt{x^2-12x+136}|$

01/03/2020 by admin Để lại bình luận Thuộc chủ đề:Bài tập Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

ham so
Đề bài: Tìm giá trị lớn nhất của biểu thức hàm số $f(x)=|\sqrt{x^2-2x+5}-\sqrt{x^2-12x+136}|$

Lời giải

Để ý $\begin{cases}x^2-2x+5=(x-1)^2+4 \geq 4, \forall x \in R \\ x^2-12x+136=(6-x)^2+100, \forall x \in R \end{cases}$
do vậy hàm số xác định  với $\forall x \in R$
* Xét các vectơ : $\overrightarrow a=(x-1;-2), \overrightarrow b(6-x;10)$. Ta có $|\overrightarrow a|=\sqrt{x^2-2x+5}$
   $|\overrightarrow b|=\sqrt{x^2-12x+136}, \overrightarrow a+\overrightarrow b=(5;8)$ và $|\overrightarrow a|+\overrightarrow b|=\sqrt{5^2+8^2}=\sqrt{89}$
* Với mọi $ \overrightarrow a,\overrightarrow b$ ta có $|\overrightarrow a|-|\overrightarrow b| \leq |\overrightarrow a|+|\overrightarrow b|$ suy ra $f(x) \leq \sqrt{89}$
Dấu đẳng thức có khi và chỉ khi $\overrightarrow a=\overrightarrow 0$ hoặc $\overrightarrow b=\overrightarrow 0$ hoặc $\overrightarrow a, \overrightarrow b$ trái hướng (*)
Hai khả năng $\overrightarrow a=\overrightarrow 0,\overrightarrow b=\overrightarrow 0$ không xảy ra do $y_{\overrightarrow a} \neq 0,y_{\overrightarrow b} \neq 0 \forall x \in R$ suy ra
(*) $\Leftrightarrow  \overrightarrow a$ trái hướng với $\overrightarrow b \Leftrightarrow  \frac{6-x}{x-1}=\frac{10}{-2}Vậy $\max f(x)=\sqrt{89}$

Bài liên quan:

  • Đề:   Cho 3 số dương $a,b,c$ thỏa $abc=1$. Tìm giá trị nhỏ nhất của:        $P=\frac{bc}{a^2b+a^2c}+\frac{ac}{b^2a+b^2c}+\frac{ab}{c^2a+c^2b}$
  • Đề: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:        $y=\sqrt{x-2}+\sqrt{4-x}$
  • Đề: Tìm giá trị lớn nhất và nhỏ nhất (nếu có) của tổng $S=3x+4y$, trong đó $(x, y)$ là nghiệm của bất phương trình $\log_{x^2+y^2}x 1$, trong hai trường hợp:a) $0
  • Đề: Tìm giá trị lớn nhất và nhỏ nhất của hàm số $y=\sqrt{1+\sin x}-3$
  • Đề: Tìm GTLN của:a)$y=x(a-2x)^{2}, 0 \leq  x \leq  \frac{a}{2} $                              b) $y=\ sin^{2}x\cos x $
  • Đề: Tìm giá trị lớn nhất, nhỏ nhất của hàm số:   $f(x)=\frac{2x^2+5x+4}{x+2}$ trên đoạn $[0;1]$.
  • Đề: Cho hàm số : $y = \frac{{x^2\cos \alpha  – 2x + \cos\alpha }}{{x^2 – 2x\cos\alpha  + 1}},\alpha  \in (0,\pi )$Tìm miền giá trị của hàm số $y$
  • Đề: Gọi $(C)$ là đồ thị hàm số $y = \frac{1}{x}$, và $(D)$ là đường thẳng có phương trình $y = ax + b$.1) $a, b$ phải thỏa mãn điều kiện gì để đường thẳng $(D)$ tiếp xúc với $(C)$?2) Giả sử điều kiện trên được nghiệm đúng. Khi đó $(D)$ cắt $Ox$ và $Oy$ tại $M$ và $N$.a) Chứng tỏ rằng tam giác $OMN$ có diện tích không đổi.b) Chứng tỏ rằng điểm giữa của đoạn $MN$ là tiếp điểm của $(D)$ với $(C)$.c) Khi nào thì khoảng cách từ gốc tọa độ $O$ đến $(D)$ là lớn nhất
  • Đề: Trên parabol $y = {x^2}$, lấy hai điểm $A( – 1, 1), B(3 , 9)$ và  một điểm $M$ thuộc cung  . Xác định vị trí của $M$ sao cho tam giác $ABM$ có diện tích lớn nhất.
  • Đề:  Cho $x,y,z$ là các số thực thỏa mãn $x^2+y^2+z^2 \leq 1$Tìm giá trị lớn nhất của biểu thức $Q=xy+yz+2zx$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2020) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.