• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan / Đề: Hai quả bóng hình cầu có kích thước khác nhau được đặt ở hai góc của một căn nhà hình hộp chữ nhật sao cho mỗi quả bóng đều tiếp xúc với hai bức tường và nền của căn nhà đó. Biết rằng trên bề mặt mỗi quả bóng đều tồn tại một điểm có khoảng cách đến hai bức tường và nền nhà mà nó tiếp xúc lần lượt bằng 1,2,3. Hãy tính tổng độ dài đường kính của hai quả bóng đó.

Đề: Hai quả bóng hình cầu có kích thước khác nhau được đặt ở hai góc của một căn nhà hình hộp chữ nhật sao cho mỗi quả bóng đều tiếp xúc với hai bức tường và nền của căn nhà đó. Biết rằng trên bề mặt mỗi quả bóng đều tồn tại một điểm có khoảng cách đến hai bức tường và nền nhà mà nó tiếp xúc lần lượt bằng 1,2,3. Hãy tính tổng độ dài đường kính của hai quả bóng đó.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

trac nghiem hinh hoc oxyz
====
Câu hỏi:

Hai quả bóng hình cầu có kích thước khác nhau được đặt ở hai góc của một căn nhà hình hộp chữ nhật sao cho mỗi quả bóng đều tiếp xúc với hai bức tường và nền của căn nhà đó. Biết rằng trên bề mặt mỗi quả bóng đều tồn tại một điểm có khoảng cách đến hai bức tường và nền nhà mà nó tiếp xúc lần lượt bằng 1,2,3. Hãy tính tổng độ dài đường kính của hai quả bóng đó.

  • A. 12
  • B. 14
  • C. 6
  • D. 10
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài.

Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài.

Đáp án đúng: A

Đề: Hai quả bóng hình cầu có kích thước khác nhau được đặt ở hai góc của một căn nhà hình hộp chữ nhật sao cho mỗi quả bóng đều tiếp xúc với hai bức tường và nền của căn nhà đó. Biết rằng trên bề mặt mỗi quả bóng đều tồn tại một điểm có khoảng cách đến hai bức tường và nền nhà mà nó tiếp xúc lần lượt bằng 1,2,3. Hãy tính tổng độ dài đường kính của hai quả bóng đó. 1

Xét quả bóng tiếp xúc với các bức tường và chọn hệ trục Oxyz như hình vẽ bên (tương tự với góc tường còn lại).

Gọi \(I\left( {a;a;a} \right)\) là tâm của mặt cầu (tâm quả bóng) và R = a. \( \Rightarrow \) phương trình mặt cầu quả bóng là

\(\left( S \right):{\left( {x – a} \right)^2} + {\left( {y – a} \right)^2} + {\left( {z – a} \right)^2} = {a^2}\)  \(\left( 1 \right)\)

Giả sử \(M\left( {x,y,z} \right)\) nằm trên mặt cầu (bề mặt của quả bóng) sao cho  \(d\left( {M;\left( {Oxy} \right)} \right) = 1,d\left( {M;\left( {Oyz} \right)} \right) = 2,d\left( {M;\left( {Oxz} \right)} \right) = 3\)

Khi đó \(z = 1;x = 2;y = 3 \Rightarrow M\left( {2;3;1} \right) \in \left( S \right)\)   \(\left( 2 \right)\)

Từ \(\left( 1 \right)\), \(\left( 2 \right)\) suy ra \({\left( {1 – a} \right)^2} + {\left( {2 – a} \right)^2} + {\left( {3 – a} \right)^2} = {a^2}\)

\( \Rightarrow \left\{ \begin{array}{l}{R_1} = {a_1} = 3 + \sqrt 2 \\{R_2} = {a_2} = 3 – \sqrt 2 \end{array} \right. \Rightarrow {d_1} + {d_2} = 2\left( {{R_1} + {R_2}} \right) = 12.\)

=======|+|
Xem lại lý thuyết Phương pháp tọa độ trong không gian

Bài liên quan:

  1. Đề toán 2022 [ Mức độ 4] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(I\left( {1;\,3;\,9} \right)\) bán kính bằng \(3\). Gọi \(M\), \(N\) là hai điểm lần lượt thuộc hai trục \(Ox\), \(Oz\) sao cho đường thẳng \(MN\) tiếp xúc với \(\left( S \right)\), đồng thời mặt cầu ngoại tiếp tứ diện \(OIMN\) có bán kính bằng \(\frac{{13}}{2}\). Gọi \(A\) là tiếp điểm của \(MN\) và \(\left( S \right)\), giá trị \(AM.AN\) bằng

  2. Đề toán 2022 Trong không gian \(Oxyz\), cho mặt cầu \((S)\) tâm \(I(9;3;1)\) bán kính bằng 3. Gọi \(M\), \(N\) là hai điểm lần lượt thuộc hai trục \(Ox\), \(Oz\) sao cho đường thẳng \(MN\) tiếp xúc với \((S)\),đồng thời mặt cầu ngoại tiếp tứ diện \(OIMN\) có bán kính bằng \(\frac{{13}}{2}\). Gọi \(A\) là tiếp điểm của \(MN\) và \((S)\), giá trị \(AM.AN\) bằng

  3. Đề toán 2022 Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(I\left( {1;4;2} \right)\), bán kính bằng 2. Gọi \(M,N\) là hai điểm lần lượt thuộc hai trục \(Ox,Oy\) sao cho đường thẳng \(MN\) tiếp xúc với \(\left( S \right)\), đồng thời mặt cầu ngoại tiếp tứ diện \(OIMN\) có bán kính bằng \(\frac{7}{2}\). Gọi \(A\) là tiếp điểm của \(MN\) và \(\left( S \right)\), giá trị \(AM.AN\) bằng

  4. Đề toán 2022 [2H3-3.3-4] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(I\left( {4\,;\,1\,;\,2} \right)\) bán kính bằng 2. Gọi \(M,N\) là hai điểm lần lượt thuộc hai trục \(Ox,Oy\) sao cho đường thẳng \(MN\) tiếp xúc với \(\left( S \right)\), đồng thời mặt cầu ngoại tiếp tứ diện \(OIMN\) có bán kính bằng \(\frac{7}{2}\). Gọi \(A\) là tiếp điểm của \(MN\) và \(\left( S \right)\), giá trị của \(AM.AN\) bằng.

  5. Trong không gian với hệ trục \(Oxyz,\)cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x – 4y + 6z – 13 = 0\) và đường thẳng \(d:\frac{{x + 1}}{1} = \frac{{y + 2}}{1} = \frac{{z – 1}}{1}\).
  6. Trong không gian  cho mặt cầu \({x^2} + {y^2} + {z^2} = 9\) và điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) thuộc \(d:\left\{ \begin{array}{l}x = 1 + t\\y = 1 + 2t\\z = 2 – 3t\end{array} \right.\). Ba điểm \(A\), \(B\), \(C\) phân biệt cùng thuộc mặt cầu sao cho \(MA\), \(MB\), \(MC\) là tiếp tuyến của mặt cầu. Biết rằng mặt phẳng \(\left( {ABC} \right)\) đi qua \(D\left( {1;1;2} \right)\). Tổng \(T = x_0^2 + y_0^2 + z_0^2\) bằng
  7. Điều kiện để \(\left( S \right):{x^2} + {y^2} + {z^2} + Ax + By + Cz + D = 0\) là một mặt cầu là:
  8. Với điều kiện nào của m thì mặt phẳng cong sau là mặt cầu?  \(\left( S \right):{x^2} + {y^2} + {z^2} + 2\left( {3 – m} \right)x – 3\left( {m + 1} \right)y – 2mz + 2{m^2} + 7 = 0\)
  9. Giá trị \(\alpha\) phải thỏa mãn điều kiện nào để mặt cong là mặt cầu: \(\left( S \right):{x^2} + {y^2} + {z^2} + 2\left( {3 – {{\cos }^2}\alpha } \right)x + 4\left( {{{\sin }^2}\alpha – 1} \right) + 2z + \cos 4\alpha + 8 = 0\)? \((k\in Z)\)
  10. Giá trị t phải thỏa mãn điều kiện nào để mặt cong sau là mặt cầu: \(\left( S \right):{x^2} + {y^2} + {z^2} + 2\left( {2 – \ln t} \right)x + 4\ln t.y + 2\left( {\ln t + 1} \right)z + 5{\ln ^2}t + 8 = 0\)
  11. Cho hai điểm \(A\left( {2, – 3, – 1} \right);\,\,\,B\left( { – 4,5, – 3} \right)\). Định k để tập hợp các điểm M(x;y;z) sao cho \(A{M^2} + B{M^2} = 2\left( {{k^2} + 1} \right),\,\,k \in {R^ + }\) là một mặt cầu
  12. Trong không gian với hệ tọa độ Oxyz , cho mặt cầu (S) có phương trình \(x^{2}+y^{2}+z^{2}+2 x-6 y+1=0\) . Tính tọa độ tâm I , bán kính R của mặt cầu (S). 
  13. Trong không gian với hệ toạ độ , cho mặt cầu \((S): x^{2}+y^{2}+z^{2}-4 x+2 y+6 z-2=0\).Tìm của toạ độ tâm và tính bán kính 
  14. Trong không gian với hệ trục tọa độ Oxyz , mặt cầu \((S): x^{2}+y^{2}+z^{2}-8 x+4 y+2 z-4=0\) có bán kính R là 
  15. Trong không gian với hệ trục toạ độ Oxyz , cho điểm I(-2;1;3) và mặt phẳng\((P):2 x-y+2 z-10=0 \text { . }\) . Tính bán kính r của mặt cầu (S), biết rằng (S) có tâm I và nó cắt (P) theo một đường tròn (T) có chu vi bằng \(10\pi\) . 

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.