adsense
Câu hỏi:
Tính tích phân \(I = \int\limits_1^2 {\frac{{\ln x}}{{{x^3}}}dx} .\)
- A. \(I = \frac{{3 + 2\ln 2}}{{16}}.\)
- B. \(I = \frac{{2 – \ln 2}}{{16}}.\)
- C. \(I = \frac{{2 + \ln 2}}{{16}}.\)
- D. \(I = \frac{{3 – 2\ln 2}}{{16}}.\)
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài.
Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài.
adsense
Đáp án đúng: D
Đặt \(\left\{ \begin{array}{l}u = \ln x\\dv = \frac{{dx}}{{{x^3}}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \frac{{dx}}{x}\\v = – \frac{1}{{2{x^2}}}\end{array} \right.\)
\(\Rightarrow I = \left. { – \frac{{\ln x}}{{2{x^2}}}} \right|_1^2 + \frac{1}{2}\int\limits_1^2 {\frac{{dx}}{{{x^3}}}} = \left. { – \frac{{\ln x}}{{2{x^2}}}} \right|_1^2\left. { – \frac{1}{{4{x^2}}}} \right|_1^2 = – \frac{{\ln 2}}{8} + \frac{3}{{16}} = \frac{{3 – \ln 2}}{{16}}.\)
======
Xem lý thuyết Nguyên hàm – tích phân và ứng dụng tích phân.
Trả lời