• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Cực trị của hàm số có tham số m

Đăng ngày: 07/09/2018 Biên tập: admin Thuộc chủ đề:Toán lớp 12 Tag với:Cực trị hàm số

Tìm tham số để hàm số có cực trị thỏa mãn điều kiện cho trước

Ví dụ 1:

Tìm m để hàm số \(y = \left( {m + 2} \right){x^3} + 3{x^2} + mx – 5\) có hai cực trị.

Lời giải:

  • Với m=-2 hàm số trở thành \(y = 3{x^2} – 2x – 5\) không thể có hai cực trị. (1)
  • Với \(m\ne-2\) ta có: \(y’ = 3\left( {m + 2} \right){x^2} + 6x + m\)
    • Hàm số có hai cực trị khi và chỉ khi phương trình \(y’=0\) có hai nghiệm phân biệt.
    • Điều này xảy ra khi: \(\Delta ‘ = – 3\left( {{m^2} + 2m – 3} \right) > 0 \Leftrightarrow {m^2} + 2m – 3 < 0 \Leftrightarrow – 3 < m < 1.\) (2)
  • Từ (1) (2) suy ra hàm số có hai cực trị khi: \(m \in \left( { – 3; – 2} \right) \cup \left( { – 2;1} \right)\)

Ví dụ 2: 

Tìm tất cả các giá trị thực của tham số m để hàm số \(\: y = -x^3 + (m+3)x^2 – (m^2 + 2m)x – 2\) đạt cực đại tại \(x=2.\)

Lời giải:

  • Hàm số có tập xác định: \(D=\mathbb{R}\).
  • \(y’ = -3x^2 + 2(m+3)x-(m^2 + 2m);\)
  • Để hàm số có cực trị tại \(x=2\) thì:
    • ​\(y'(2) = 0 \Leftrightarrow – 12 + 4(m + 3) – {m^2} – 2m = 0 \Leftrightarrow \left[ \begin{array}{l} m = 0\\ m = 2 \end{array} \right.\)
    • Ta có: \(y” = – 6x + 2(m + 3)\)
      • Với \(m=0\) thì \(y”(2)=-6<0.\)
      • Với \(m=2\) thì \(y”(2)=-2<0\).
  • Thứ lại với \(m=0\) và \(m=2\) hàm số đều đạt cực đại tại x=2.

Thuộc chủ đề:Toán lớp 12 Tag với:Cực trị hàm số

Bài liên quan:

  1. Bài tập luyện tập CỰC TRỊ của hàm số – 2022
  2. Bài 2. Cực trị của hàm số
  3. Phát triển câu 13 đề tốt nghiệp THPT 2020 – Cực trị hàm số
  4. Trắc nghiệm Cực trị của hàm số
  5. Sách giáo khoa Bài 2. Cực trị của hàm số – Giải tích 12 nâng cao
  6. Sách giáo khoa Bài 2. Cực trị của hàm số – Giải tích 12 cơ bản
  7. Ví dụ minh họa Cực trị của hàm số
  8. Lý thuyết Cực trị của hàm số

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Học toán lớp 12
  • Chương 1: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số
  • Chương 2: Hàm Số Lũy Thừa Hàm Số Mũ Và Hàm Số Lôgarit
  • Chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng
  • Chương 4: Số Phức
  • Chương 1: Khối Đa Diện
  • Chương 2: Mặt Nón, Mặt Trụ, Mặt Cầu
  • Chương 3: Phương Pháp Tọa Độ Trong Không Gian




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.