• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Sự tương giao đồ thị hàm số / Cho hàm số \(f\left( x \right) = {x^3} – 3{x^2} + 2\) có đồ thị là đường cong trong hình bên. Hỏi phương trình \({\left( {{x^3} – 3{x^2} + 2} \right)^3} – 3{\left( {{x^3} – 3{x^2} + 2} \right)^2} + 2 = 0\) có bao nhiêu nghiệm thực dương phân biệt?

Cho hàm số \(f\left( x \right) = {x^3} – 3{x^2} + 2\) có đồ thị là đường cong trong hình bên.

Hỏi phương trình \({\left( {{x^3} – 3{x^2} + 2} \right)^3} – 3{\left( {{x^3} – 3{x^2} + 2} \right)^2} + 2 = 0\) có bao nhiêu nghiệm thực dương phân biệt?

Ngày 25/09/2021 Thuộc chủ đề:Trắc nghiệm Sự tương giao đồ thị hàm số Tag với:Tìm m để phương trình có nghiệm VDC, Tuong giao ham hop

Câu hỏi: Cho hàm số \(f\left( x \right) = {x^3} – 3{x^2} + 2\) có đồ thị là đường cong trong hình bên.
Cho hàm số (fleft( x right) = {x^3} - 3{x^2} + 2) có đồ thị là đường cong trong hình bên.</p> <!-- wp:image {"width":549,"height":455} -->
<figure class="wp-block-image is-resized"><img src="https://lh5.googleusercontent.com/uj-s3L2YjuamuYji3LMGzvQdEnW6eA_omLVAXoRmgCWGbEe1foyGuMl2wTsBd0_bUXZLOQSQlEGJsQoKhRC4CkSJ08skJVakkO8q-N9JtcolZVsuQemM0l_m83ng5ocEvZparOM=s0" alt="" width="549" height="455"/></figure>
<!-- /wp:image --> <p>Hỏi phương trình ({left( {{x^3} - 3{x^2} + 2} right)^3} - 3{left( {{x^3} - 3{x^2} + 2} right)^2} + 2 = 0) có bao nhiêu nghiệm thực dương phân biệt?</p> 1

Hỏi phương trình \({\left( {{x^3} – 3{x^2} + 2} \right)^3} – 3{\left( {{x^3} – 3{x^2} + 2} \right)^2} + 2 = 0\) có bao nhiêu nghiệm thực dương phân biệt?

A. \(3\).

B. \(5\).

C. \(7\).

D. \(1\).

LỜI GIẢI CHI TIẾT

Đặt \(t = {x^3} – 3{x^2} + 2\), ta có phương trình \({t^3} – 3{t^2} + 2 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = 1 + \sqrt 3 \\t = 1 – \sqrt 3 \end{array} \right.\).

Cho hàm số (fleft( x right) = {x^3} - 3{x^2} + 2) có đồ thị là đường cong trong hình bên.</p> <!-- wp:image {"width":549,"height":455} -->
<figure class="wp-block-image is-resized"><img src="https://lh5.googleusercontent.com/uj-s3L2YjuamuYji3LMGzvQdEnW6eA_omLVAXoRmgCWGbEe1foyGuMl2wTsBd0_bUXZLOQSQlEGJsQoKhRC4CkSJ08skJVakkO8q-N9JtcolZVsuQemM0l_m83ng5ocEvZparOM=s0" alt="" width="549" height="455"/></figure>
<!-- /wp:image --> <p>Hỏi phương trình ({left( {{x^3} - 3{x^2} + 2} right)^3} - 3{left( {{x^3} - 3{x^2} + 2} right)^2} + 2 = 0) có bao nhiêu nghiệm thực dương phân biệt?</p> 2

Với \(t = 1\)\( \Rightarrow f\left( x \right) = 1\). Quan sát đồ thị hàm số \(y = f\left( x \right)\), ta thấy đường thẳng \(y = 1\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại \(3\) điểm phân biệt trong đó có hai điểm có hoành độ dương nên phương trình \(t = 1\) có hai nghiệm \(x\) dương phân biệt.

Với \(t = 1 + \sqrt 3 \). Quan sát đồ thị hàm số \(y = f\left( x \right)\), ta thấy đường thẳng \(y = 1 + \sqrt 3 \) cắt đồ thị hàm số \(y = f\left( x \right)\)tại một điểm và là điểm có hoành độ dương nên phương trình \(t = 1 + \sqrt 3 \) có một nghiệm \(x\) dương.

Với \(t = 1 – \sqrt 3 \). Quan sát đồ thị hàm số \(y = f\left( x \right)\), ta thấy đường thẳng \(y = 1 – \sqrt 3 \) cắt đồ thị hàm số \(y = f\left( x \right)\) tại \(3\) điểm phân biệt trong đó có hai điểm có hoành độ dương nên phương trình \(t = 1 – \sqrt 3 \) có hai nghiệm \(x\) dương phân biệt.

Vậy phương trình bài ra có \(5\) nghiệm phân biệt dương.

=======
Thuộc mục: Trắc nghiệm Sự tương giao đồ thị hàm số

Bài liên quan:

  1. Bài tập luyện tập TƯƠNG GIAO của hàm số – 2022
  2. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({f^2}\left( x \right) – \left( {m + 5} \right)\left| {f\left( x \right)} \right| + 4m + 4 = 0\) có 7 nghiệm phân biệt?
  3. Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Gọi \(S\) là tập hợp tất cả các giá trị nguyên của tham số \(m\) để phương trình \(\left| {f\left( {2\sin x – 1} \right)} \right| = m\) có nghiệm thuộc khoảng \(\left( {0;\pi } \right)\). Tính số phần tử của tập \(S\).

  4. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {\sqrt[3]{{f(x) + m}}} \right) = {x^3} – m\) có nghiệm \(x \in \left[ {1;\,2} \right]\) biết \(f(x) = {x^5} + 3{x^3} – 4m\).
  5. Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

    Số nghiệm thuộc đoạn \(\left[ { – \pi \,;\,3\pi } \right]\) của phương trình \(2f\left( {\cos x} \right) – 3 = 0\) là

  6. Cho hàm số \(f\left( x \right)\), hàm số \(y = f’\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. bất phương trình \(f\left( x \right) < x + m\) (\(m\) là tham số thực) nghiệm đúng với mọi \(x \in \left( { – 1;0} \right)\) khi và chỉ khi

  7. Cho hàm số \(y = f\left( x \right)\)liên tục trên \(\mathbb{R}\)có đồ thị như hình vẽ

    Có bao nhiêu giá trị nguyên của tham số \(m\)để phương trình \(f\left( {f\left( x \right) + m} \right) + 1 = f\left( x \right) + m\) có đúng 3 nghiệm phân biệt trên\(\left[ { – 1;1} \right]\)

  8. Cho hàm số có bảng biến thiên như sau:

    Số nghiệm thuộc đoạn \(\left[ { – \pi;2\pi } \right]\) của phương trình \(3f\left( {{\mathop{\rm s}\nolimits} {\rm{in2x}}} \right) – 5 = 0\) là

  9. Cho hàm số \(y = {x^4} – 2m{x^2} + 4m – 4\) (\(m\) là tham số thực). Xác định \(m\) để hàm số đã cho có \(3\) cực trị tạo thành tam giác có diện tích bằng \(1\).
  10. Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

    Số nghiệm thuộc đoạn \(\left[ { – \pi;\,2\pi } \right]\) của phương trình \(3f\left( {{\rm{cos2}}x} \right) – 3 = 0\) là

  11. Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ

    Tập hợp các giá trị \(m\) để phương trình \(f\left( {\cos 2x} \right) – 2m – 1 = 0\) có nghiệm thuộc khoảng \(\left( {\frac{{ – \pi }}{3};\frac{\pi }{4}} \right)\) là:

  12. Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên:

    .

    Số nghiệm thuộc đoạn \(\left[ { – \pi;4\pi } \right]\) của phương trình \(f\left( {\sqrt 3 {\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x} \right) – 1 = 0\) là

  13. Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{{mx – 4}}{{m – x}}\) nghịch biến trên khoảng \(\left( { – 3;1} \right)\)?

  14. Cho hàm số \(y = f(x)\) liên tục trên R và có đồ thị như hình vẽ bên. Số nghiệm thực phân biệt của phương trình \(f\left( {f(x)} \right) = f(x)\) bằng

  15. Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ

    Số nghiệm của phương trình \(3f\left( {\cos x} \right) – 2 = 0\) trên khoảng \(\left( { – \frac{\pi }{2};\frac{{3\pi }}{2}} \right)\) là:

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.