• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Sự tương giao đồ thị hàm số / Cho hàm số có bảng biến thiên như hình vẽ Có bao nhiêu giá trị nguyên của \(m\) để phương trình = có nghiệm thực?

Cho hàm số có bảng biến thiên như hình vẽ

Có bao nhiêu giá trị nguyên của \(m\) để phương trình = có nghiệm thực?

Ngày 24/09/2021 Thuộc chủ đề:Trắc nghiệm Sự tương giao đồ thị hàm số Tag với:Tìm m để phương trình có nghiệm VDC, Tuong giao ham hop

Câu hỏi: Cho hàm số có bảng biến thiên như hình vẽ
Cho hàm số <sub></sub> có bảng biến thiên như hình vẽ</p> <!-- wp:image -->
<figure class="wp-block-image"><img src="https://lh5.googleusercontent.com/VlxBJcNRq1wQAMVTfNbxZPO76f5IGoOiUjKBcVnuSQv1E2ORqmMT4V-ZRsIfxIT0ZQyl2cvld8RmlkOEjg55vjaaFISNRITJDm-8ApHfOYNz0WtHzfMwAL7pdM3VLBTs95Embxo=s0" alt=""/></figure>
<!-- /wp:image --> <p>Có bao nhiêu giá trị nguyên của (m) để phương trình <sub></sub> =<sub></sub> có nghiệm thực?</p> 1

Có bao nhiêu giá trị nguyên của \(m\) để phương trình = có nghiệm thực?

A. \(6\).

B. \(5\).

C. \(4\).

D. 7.

LỜI GIẢI CHI TIẾT

Đặt phương trình trở thành có nghiệm

Dựa trên bảng biến thiên để đường thẳng cắt đồ thị hàm số trên đoạn ta phải có Cho hàm số <sub></sub> có bảng biến thiên như hình vẽ</p> <!-- wp:image -->
<figure class="wp-block-image"><img src="https://lh5.googleusercontent.com/VlxBJcNRq1wQAMVTfNbxZPO76f5IGoOiUjKBcVnuSQv1E2ORqmMT4V-ZRsIfxIT0ZQyl2cvld8RmlkOEjg55vjaaFISNRITJDm-8ApHfOYNz0WtHzfMwAL7pdM3VLBTs95Embxo=s0" alt=""/></figure>
<!-- /wp:image --> <p>Có bao nhiêu giá trị nguyên của (m) để phương trình <sub></sub> =<sub></sub> có nghiệm thực?</p> 2\( – 2 \le f(\left| m \right|) \le 2 \Leftrightarrow \left| m \right| \le 3\) Vì vậy .

=======
Thuộc mục: Trắc nghiệm Sự tương giao đồ thị hàm số

Bài liên quan:

  1. Bài tập luyện tập TƯƠNG GIAO của hàm số – 2022
  2. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({f^2}\left( x \right) – \left( {m + 5} \right)\left| {f\left( x \right)} \right| + 4m + 4 = 0\) có 7 nghiệm phân biệt?
  3. Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Gọi \(S\) là tập hợp tất cả các giá trị nguyên của tham số \(m\) để phương trình \(\left| {f\left( {2\sin x – 1} \right)} \right| = m\) có nghiệm thuộc khoảng \(\left( {0;\pi } \right)\). Tính số phần tử của tập \(S\).

  4. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {\sqrt[3]{{f(x) + m}}} \right) = {x^3} – m\) có nghiệm \(x \in \left[ {1;\,2} \right]\) biết \(f(x) = {x^5} + 3{x^3} – 4m\).
  5. Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

    Số nghiệm thuộc đoạn \(\left[ { – \pi \,;\,3\pi } \right]\) của phương trình \(2f\left( {\cos x} \right) – 3 = 0\) là

  6. Cho hàm số \(f\left( x \right)\), hàm số \(y = f’\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. bất phương trình \(f\left( x \right) < x + m\) (\(m\) là tham số thực) nghiệm đúng với mọi \(x \in \left( { – 1;0} \right)\) khi và chỉ khi

  7. Cho hàm số \(y = f\left( x \right)\)liên tục trên \(\mathbb{R}\)có đồ thị như hình vẽ

    Có bao nhiêu giá trị nguyên của tham số \(m\)để phương trình \(f\left( {f\left( x \right) + m} \right) + 1 = f\left( x \right) + m\) có đúng 3 nghiệm phân biệt trên\(\left[ { – 1;1} \right]\)

  8. Cho hàm số có bảng biến thiên như sau:

    Số nghiệm thuộc đoạn \(\left[ { – \pi;2\pi } \right]\) của phương trình \(3f\left( {{\mathop{\rm s}\nolimits} {\rm{in2x}}} \right) – 5 = 0\) là

  9. Cho hàm số \(y = {x^4} – 2m{x^2} + 4m – 4\) (\(m\) là tham số thực). Xác định \(m\) để hàm số đã cho có \(3\) cực trị tạo thành tam giác có diện tích bằng \(1\).
  10. Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

    Số nghiệm thuộc đoạn \(\left[ { – \pi;\,2\pi } \right]\) của phương trình \(3f\left( {{\rm{cos2}}x} \right) – 3 = 0\) là

  11. Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ

    Tập hợp các giá trị \(m\) để phương trình \(f\left( {\cos 2x} \right) – 2m – 1 = 0\) có nghiệm thuộc khoảng \(\left( {\frac{{ – \pi }}{3};\frac{\pi }{4}} \right)\) là:

  12. Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên:

    .

    Số nghiệm thuộc đoạn \(\left[ { – \pi;4\pi } \right]\) của phương trình \(f\left( {\sqrt 3 {\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x} \right) – 1 = 0\) là

  13. Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{{mx – 4}}{{m – x}}\) nghịch biến trên khoảng \(\left( { – 3;1} \right)\)?

  14. Cho hàm số \(y = f(x)\) liên tục trên R và có đồ thị như hình vẽ bên. Số nghiệm thực phân biệt của phương trình \(f\left( {f(x)} \right) = f(x)\) bằng

  15. Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ

    Số nghiệm của phương trình \(3f\left( {\cos x} \right) – 2 = 0\) trên khoảng \(\left( { – \frac{\pi }{2};\frac{{3\pi }}{2}} \right)\) là:

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.