• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Sách ôn thi toán / Các bài toán nguyên hàm và tích phân vận dụng, vận dụng cao – Nguyễn Minh Tuấn

Các bài toán nguyên hàm và tích phân vận dụng, vận dụng cao – Nguyễn Minh Tuấn

Ngày 01/09/2019 Thuộc chủ đề:Sách ôn thi toán Tag với:On thi nguyen ham tich phan

Các bài toán nguyên hàm và tích phân vận dụng, vận dụng cao - Nguyễn Minh Tuấn 1

Tải cuốn sách “Các bài toán nguyên hàm và tích phân vận dụng, vận dụng cao” do tác giả Nguyễn Minh Tuấn biên soạn tuyển tập các bài toán nguyên hàm, tích phân hay và khó, có tính vận dụng cao. Tác giả đưa ra cơ sở lý thuyết và phương pháp để giải nhanh các dạng toán Nguyên Hàm và Tích phân theo 15 chủ đề chính sau đây:

1. Tích phân truy hồi

2. Nguyên hàm – tích phân hàm phân thức hữu tỷ

3. Nguyên hàm – tích phân hàm lượng giác

4. Đưa biểu thức vào trong dấu vi phân

5. Tích phân liên kết

6. Kỹ thuật lượng giác hóa

7. Nguyên hàm – tích phân từng phần

8. Đánh giá hàm số để tính tích phân

9. Kỹ thuật thế biến – lấy tích phân 2 vế

10. Tích phân hàm cho bởi 2 công thức

11. Tích phân hàm ẩn

12. Tích phân đổi cận – đổi biến

13. Tích phân có cận thay đổi

14. Bài toán liên quan tới f’(x) và f(x)

15. Bất đẳng thức tích phân

CLICK LINK DOWNLOAD EBOOK TẠI ĐÂY.

Bài liên quan:

  1. Cho \(F\left( x \right)\) là nguyên hàm của hàm số \(f\left( x \right) = \frac{{{{\left( {x + \sqrt {{x^2} + 1} } \right)}^{2021}}}}{{\sqrt {{x^2} + 1} }}\) và \(F\left( 0 \right) = 1\). Giá trị của \(F\left( 1 \right)\) bằng

  2. Họ các nguyên hàm của hàm số \(f(x) = x\left( {1 + {e^x}} \right)\)là

  3. \(\int {\frac{{2x – 1}}{{x + 1}}{\rm{d}}x} \) bằng

  4. Biết \(f\left( x \right) = \int {{x^3}{e^{{x^2} + 1}}dx} \) và \(f\left( 0 \right) = – \frac{1}{2}e\). Khi đó \(f\left( 1 \right)\) bằng

  5. Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{2x + 1}}{{{x^4} + 2{x^3} + {x^2}}}\) trên khoảng \(\left( {0; + \infty } \right)\) thỏa mãn \(F\left( 1 \right) = \frac{1}{2}\). Giá trị của biểu thức \(S = F\left( 1 \right) + F\left( 2 \right) + F\left( 3 \right) + … + F\left( {2023} \right)\) bằng

  6. Cho hàm số \(f(x) = \frac{{2{x^4} + 3}}{{{x^2}}}\). Khẳng định nào sau đây là đúng?

  7. Biết \(F\left( x \right) = {e^{2x}}\) là một nguyên hàm của hàm số \(f\left( x \right)\). Khi đó khẳng định nào sau đây là đúng?

  8. Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(y = \sqrt {{{\ln }^2}x + 1} .\frac{{\ln x}}{x}\) mà \(F\left( 1 \right) = \frac{1}{3}\). Giá trị \({F^2}\left( e \right)\) bằng

  9. Cho hàm số \(f\left( x \right) = {\cos ^2}x\). Khẳng định nào sau đây là đúng?

  10. Để tính \(I = \int {\frac{{{e^{\tan x}}}}{{co{s^2}x}}{\rm{d}}x} \) theo phương pháp đổi biến số, ta đặt \(t = \tan x\). Khi đó

  11. ÔN TẬP CHUONG TÍCH_PHÂN TN THPT 2023-BT FILE docx
  12. Sách hàm số MŨ – LOGARIT – TÍCH PHÂN – TƯ DUY TOÁN HỌC 4.0
  13. Cho \(F\left( x \right)\)là nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{2\sqrt {x\left( {x + 3} \right)} }}\)trên \(\left( {0; + \infty } \right)\)thỏa mãn \(F\left( 1 \right) = \ln 3\). Giá trị của \({e^{F\left( {2021} \right)}} – {e^{F\left( {2020} \right)}}\) thuộc khoảng nào?
  14. Cho hàm số y =f(x) có đạo hàm liên tục trên ℝ ,\(f(0)=0 \text { và } f(x)+f\left(\frac{\pi}{2}-x\right)=\sin x \cdot \cos x \text { với } \forall x \in \mathbb{R}\) . Giá trị của tích phân \(\int_{0}^{\frac{\pi}{2}} x f^{\prime}(x) d x\) bằng ?
  15. Chuyên đề bám sát đề thi THPT Quốc Gia Nguyên Hàm – Tích Phân

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.