Câu hỏi: 24. Tính tích phân \(I = \int\limits_1^{\rm{e}} {\frac{{\sqrt {\ln x + 1} }}{x}} {\rm{d}}x\) bằng cách đổi biến số, đặt \(\sqrt {\ln x + 1} = u\) thì \(I\) bằng A. \(\int\limits_1^{\rm{e}} u \,{\rm{d}}u\). B. \(2\int\limits_1^{\rm{e}} u \,{\rm{d}}u\). C. \(\int\limits_1^{\sqrt 2 } u \,{\rm{d}}u\). D. \(2\int\limits_1^{\sqrt 2 } {{u^2}} … [Đọc thêm...] về24. Tính tích phân \(I = \int\limits_1^{\rm{e}} {\frac{{\sqrt {\ln x + 1} }}{x}} {\rm{d}}x\) bằng cách đổi biến số, đặt \(\sqrt {\ln x + 1} = u\) thì \(I\) bằng
16. Tích phân \(\int\limits_0^2 {\frac{x}{{{x^2} + 3}}\,} {\rm{d}}x\)bằng
Câu hỏi: 16. Tích phân \(\int\limits_0^2 {\frac{x}{{{x^2} + 3}}\,} {\rm{d}}x\)bằng A. \(\frac{1}{2}\log \frac{7}{3}\). B. \(\ln \frac{7}{3}\). C. \(\frac{1}{2}\ln \frac{3}{7}\). D. \(\frac{1}{2}\ln \frac{7}{3}\). Lời giải Đặt \(u = {x^2} + 3\)\( \Rightarrow {\rm{d}}u = 2x{\rm{d}}x\)\( \Rightarrow x{\rm{d}}x = \frac{1}{2}{\rm{d}}u\). Đổi cận \(x = 0 … [Đọc thêm...] về16. Tích phân \(\int\limits_0^2 {\frac{x}{{{x^2} + 3}}\,} {\rm{d}}x\)bằng
20. Tính tích phân \(I = \int\limits_0^{\frac{\pi }{2}} {{{\cos }^7}x\sin x} \,{\rm{d}}x\) bằng cách đặt \(t = \cos x\). Mệnh đề nào dưới đây đúng ?
Câu hỏi: 20. Tính tích phân \(I = \int\limits_0^{\frac{\pi }{2}} {{{\cos }^7}x\sin x} \,{\rm{d}}x\) bằng cách đặt \(t = \cos x\). Mệnh đề nào dưới đây đúng ? A. \(I = \int\limits_0^1 {{t^7}} {\rm{d}}t\). B. \(I = - \int\limits_0^1 {{t^7}} {\rm{d}}t\). C. \(I = \int\limits_0^{\frac{\pi }{2}} {{t^7}} {\rm{d}}t\). D. \(I = - \int\limits_0^{\frac{\pi … [Đọc thêm...] về20. Tính tích phân \(I = \int\limits_0^{\frac{\pi }{2}} {{{\cos }^7}x\sin x} \,{\rm{d}}x\) bằng cách đặt \(t = \cos x\). Mệnh đề nào dưới đây đúng ?
96. Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(f\left( x \right) < 0,\,\forall x > 0\) và có đạo hàm \(f’\left( x \right)\) liên tục trên khoảng \(\left( {0\,;\, + \infty } \right)\) thỏa mãn \(f’\left( x \right) = \left( {2x + 1} \right){f^2}\left( x \right),\,\forall x > 0\) và \(f\left( 1 \right) = – \frac{1}{2}\). Giá trị của biểu thức \(f\left( 1 \right) + f\left( 2 \right) + … + f\left( {2020} \right)\) bằng
Câu hỏi: 96. Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(f\left( x \right) < 0,\,\forall x > 0\) và có đạo hàm \(f'\left( x \right)\) liên tục trên khoảng \(\left( {0\,;\, + \infty } \right)\) thỏa mãn \(f'\left( x \right) = \left( {2x + 1} \right){f^2}\left( x \right),\,\forall x > 0\) và \(f\left( 1 \right) = - \frac{1}{2}\). Giá trị của biểu thức … [Đọc thêm...] về96. Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(f\left( x \right) < 0,\,\forall x > 0\) và có đạo hàm \(f’\left( x \right)\) liên tục trên khoảng \(\left( {0\,;\, + \infty } \right)\) thỏa mãn \(f’\left( x \right) = \left( {2x + 1} \right){f^2}\left( x \right),\,\forall x > 0\) và \(f\left( 1 \right) = – \frac{1}{2}\). Giá trị của biểu thức \(f\left( 1 \right) + f\left( 2 \right) + … + f\left( {2020} \right)\) bằng
64. Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {0;3} \right]\) thỏa mãn \(\int\limits_0^3 {xf’\left( x \right)} {\rm{d}}x\,{\rm{ = }}\,{\rm{2}}\) và \(f\left( 3 \right) = 2\). Tính \(I = \int\limits_0^3 {f\left( x \right)} {\rm{d}}x\).
Câu hỏi: 64. Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {0;3} \right]\) thỏa mãn \(\int\limits_0^3 {xf'\left( x \right)} {\rm{d}}x\,{\rm{ = }}\,{\rm{2}}\) và \(f\left( 3 \right) = 2\). Tính \(I = \int\limits_0^3 {f\left( x \right)} {\rm{d}}x\). A. \(I = 4\). B. \(I = - 3\). C. \(I = - 4\). D. \(I = 6\). Lời giải Đặt … [Đọc thêm...] về64. Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {0;3} \right]\) thỏa mãn \(\int\limits_0^3 {xf’\left( x \right)} {\rm{d}}x\,{\rm{ = }}\,{\rm{2}}\) và \(f\left( 3 \right) = 2\). Tính \(I = \int\limits_0^3 {f\left( x \right)} {\rm{d}}x\).
14. Cho hàm số \(f\left( x \right)\) có \(f\left( 0 \right) = 1\) và đạo hàm \(f’\left( x \right) = x{\left( {{x^2} + 1} \right)^5}\) với \(\forall x \in \mathbb{R}\). Khi đó,\(f\left( 1 \right)\) bằng.
Câu hỏi: 14. Cho hàm số \(f\left( x \right)\) có \(f\left( 0 \right) = 1\) và đạo hàm \(f'\left( x \right) = x{\left( {{x^2} + 1} \right)^5}\) với \(\forall x \in \mathbb{R}\). Khi đó,\(f\left( 1 \right)\) bằng. A. \(\frac{{25}}{4}\). B. \(\frac{{36}}{5}\). C. \(\frac{{21}}{{10}}\). D. \(\frac{{26}}{5}\). Lời giải Ta có \(\int\limits_0^1 {f'\left( x … [Đọc thêm...] về14. Cho hàm số \(f\left( x \right)\) có \(f\left( 0 \right) = 1\) và đạo hàm \(f’\left( x \right) = x{\left( {{x^2} + 1} \right)^5}\) với \(\forall x \in \mathbb{R}\). Khi đó,\(f\left( 1 \right)\) bằng.
61. Biết \(\int\limits_1^{2022} {\frac{{{{\log }_{2022}}x}}{x}{\rm{d}}x = \frac{{\ln 2022}}{a}} \) . Tìm \(a\).
Câu hỏi: 61. Biết \(\int\limits_1^{2022} {\frac{{{{\log }_{2022}}x}}{x}{\rm{d}}x = \frac{{\ln 2022}}{a}} \) . Tìm \(a\). A. \(a = 3\). B. \(a = 2022\). C. \(a = 2\). D. \(a = 1\). Lời giải Đặt \(u = {\log _{2022}}x\) \( \Rightarrow {\rm{d}}u = \frac{1}{{x\ln 2022}}{\rm{d}}x\)\( \Rightarrow \ln 2022{\rm{d}}u = \frac{1}{x}{\rm{d}}x\). Đổi cận: \(x = … [Đọc thêm...] về61. Biết \(\int\limits_1^{2022} {\frac{{{{\log }_{2022}}x}}{x}{\rm{d}}x = \frac{{\ln 2022}}{a}} \) . Tìm \(a\).
88. Một viên gạch hoa hình vuông cạnh\(40\,cm\) được thiết kế như hình bên dưới. Diện tích mỗi cánh hoa bằng
Câu hỏi: 88. Một viên gạch hoa hình vuông cạnh\(40\,cm\) được thiết kế như hình bên dưới. Diện tích mỗi cánh hoa bằng A. \(\frac{{800}}{3}c{m^2}\). B. \(\frac{{400}}{3}\,c{m^2}\). C. \(250\,c{m^2}\). D. \(800\,c{m^2}\). Lời giải Diện tích một cánh hoa là diện tích hình phẳng được tính theo công thức sau: \(S = \int\limits_0^{20} {\left( {\sqrt … [Đọc thêm...] về88. Một viên gạch hoa hình vuông cạnh\(40\,cm\) được thiết kế như hình bên dưới. Diện tích mỗi cánh hoa bằng
27. Diện tích \(S\) của hình phẳng giới hạn bởi các đồ thị hàm số \(y = {x^2}\), \(y = x + 2\) và các đường thẳng \(x = – 2;\) \(x = 2\) được tính theo công thức
Câu hỏi: 27. Diện tích \(S\) của hình phẳng giới hạn bởi các đồ thị hàm số \(y = {x^2}\), \(y = x + 2\) và các đường thẳng \(x = - 2;\) \(x = 2\) được tính theo công thức A. \(S = \int\limits_{ - 2}^2 {\left( {{x^2} - x - 2} \right){\rm{d}}x} \). B. \(S = \int\limits_{ - 2}^2 {\left| {{x^2} - x - 2} \right|{\rm{d}}x} \). C. \(S = \int\limits_{ - 2}^2 {\left( … [Đọc thêm...] về27. Diện tích \(S\) của hình phẳng giới hạn bởi các đồ thị hàm số \(y = {x^2}\), \(y = x + 2\) và các đường thẳng \(x = – 2;\) \(x = 2\) được tính theo công thức
58. Cho \(\int\limits_0^1 {\frac{{{\rm{d}}x}}{{{e^x} + 3}}} = a + b\ln \frac{{e + 3}}{4}\), với \(a,\) \(b\) là các số hữu tỉ tối giản. Tính \(S = {a^3} + {b^3}\).
Câu hỏi: 58. Cho \(\int\limits_0^1 {\frac{{{\rm{d}}x}}{{{e^x} + 3}}} = a + b\ln \frac{{e + 3}}{4}\), với \(a,\) \(b\) là các số hữu tỉ tối giản. Tính \(S = {a^3} + {b^3}\). A. \(S = - 2\). B. \(S = 0\). C. \(S = 1\). D. \(S = 2\). Lời giải Đặt \(t = {e^x} \Rightarrow {\rm{d}}t = {e^x}{\rm{d}}x\). Đổi cận: \(x = 0 \Rightarrow t = 1;x = 1 … [Đọc thêm...] về58. Cho \(\int\limits_0^1 {\frac{{{\rm{d}}x}}{{{e^x} + 3}}} = a + b\ln \frac{{e + 3}}{4}\), với \(a,\) \(b\) là các số hữu tỉ tối giản. Tính \(S = {a^3} + {b^3}\).