• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Đề: Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (giây) kể từ khi quả bóng được đá lên, h là độ cao (mét). Giả thiết quả bóng được đá từ độ cao 1 m và đạt được độ cao 6 m sau 1 giây đồng thời sau 6 giây quả bóng lại trở về độ cao 1 m. Hỏi trong khoảng thời gian 5 giây, kể từ lúc bắt đầu được đá, độ cao lớn nhất của quả bóng đạt được bằng bao nhiêu?

Ngày 16/05/2019 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Toán thực tế MAX - MIN

Câu hỏi: Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (giây) kể từ khi quả bóng được đá lên, h là độ cao (mét). Giả thiết quả bóng được đá từ độ cao 1 m và đạt được độ cao 6 m sau 1 giây đồng thời sau 6 giây quả bóng lại trở về độ cao 1 m. Hỏi … [Đọc thêm...] vềĐề: Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (giây) kể từ khi quả bóng được đá lên, h là độ cao (mét). Giả thiết quả bóng được đá từ độ cao 1 m và đạt được độ cao 6 m sau 1 giây đồng thời sau 6 giây quả bóng lại trở về độ cao 1 m. Hỏi trong khoảng thời gian 5 giây, kể từ lúc bắt đầu được đá, độ cao lớn nhất của quả bóng đạt được bằng bao nhiêu?

Đề: Một đại lý xăng dầu cần làm một bồn chứa dầu hình trục có đáy và nắp đậy bằng tôn với thể tích \(16\pi \left( {{m^3}} \right)\). Biết rằng giá thành (cả vật liệu và tiền công) được tính theo mét vuông, tìm đường kính đáy của bồn để đại lý phải trả ít chi phí nhất.

Ngày 16/05/2019 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Toán thực tế MAX - MIN

Câu hỏi: Một đại lý xăng dầu cần làm một bồn chứa dầu hình trục có đáy và nắp đậy bằng tôn với thể tích \(16\pi \left( {{m^3}} \right)\). Biết rằng giá thành (cả vật liệu và tiền công) được tính theo mét vuông, tìm đường kính đáy của bồn để đại lý phải trả ít chi phí … [Đọc thêm...] vềĐề: Một đại lý xăng dầu cần làm một bồn chứa dầu hình trục có đáy và nắp đậy bằng tôn với thể tích \(16\pi \left( {{m^3}} \right)\). Biết rằng giá thành (cả vật liệu và tiền công) được tính theo mét vuông, tìm đường kính đáy của bồn để đại lý phải trả ít chi phí nhất.

Đề: Một ngọn hải đăng được đặt tại vị trí \(A\)  trên mặt biển cách bờ biển một khoảng \(AB = 5km\) . Trên bờ biển có một cái kho ở cách \(B\) \(7\) km. Người canh hải đăng có thể chèo đò đến điểm \(M\) trên bờ biển với vận tốc \(4km/h\)  rồi đi bộ đến \(C\)  với vận tốc \(6km/h\) . Vị trí của điểm \(M\)  cách \(B\) một khoảng bằng bao nhiêu để người đó đi đến kho \(C\)  ít tốn thời gian nhất.

Ngày 16/05/2019 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Toán thực tế MAX - MIN

Câu hỏi: Một ngọn hải đăng được đặt tại vị trí \(A\)  trên mặt biển cách bờ biển một khoảng \(AB = 5km\) . Trên bờ biển có một cái kho ở cách \(B\) \(7\) km. Người canh hải đăng có thể chèo đò đến điểm \(M\) trên bờ biển với vận tốc \(4km/h\)  rồi đi bộ đến \(C\)  với vận tốc \(6km/h\) . Vị trí của điểm \(M\)  cách \(B\) một khoảng bằng bao nhiêu để người đó đi đến kho … [Đọc thêm...] vềĐề: Một ngọn hải đăng được đặt tại vị trí \(A\)  trên mặt biển cách bờ biển một khoảng \(AB = 5km\) . Trên bờ biển có một cái kho ở cách \(B\) \(7\) km. Người canh hải đăng có thể chèo đò đến điểm \(M\) trên bờ biển với vận tốc \(4km/h\)  rồi đi bộ đến \(C\)  với vận tốc \(6km/h\) . Vị trí của điểm \(M\)  cách \(B\) một khoảng bằng bao nhiêu để người đó đi đến kho \(C\)  ít tốn thời gian nhất.

Đề: Một vật chuyển động theo quy luật \(s = 9{t^2} – {t^3},\) với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 5 giây, kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu? 

Ngày 16/05/2019 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Toán thực tế MAX - MIN

Câu hỏi: Một vật chuyển động theo quy luật \(s = 9{t^2} - {t^3},\) với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 5 giây, kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?  A.27 m/s. B.15 … [Đọc thêm...] vềĐề: Một vật chuyển động theo quy luật \(s = 9{t^2} – {t^3},\) với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 5 giây, kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu? 

Đề: Một khối gỗ hình trụ có chiều cao 2m người ta xẻ bớt phần vỏ của khối gỗ đó theo bốn mặt phẳng song song với trục để tạo thành một khối gỗ hình hộp chữ nhật có thể tích lớn nhất bằng 1m3. Tính đường kính của khối gỗ hình trụ đã cho.

Ngày 16/05/2019 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Toán thực tế MAX - MIN

Câu hỏi: Một khối gỗ hình trụ có chiều cao 2m người ta xẻ bớt phần vỏ của khối gỗ đó theo bốn mặt phẳng song song với trục để tạo thành một khối gỗ hình hộp chữ nhật có thể tích lớn nhất bằng 1m3. Tính đường kính của khối gỗ hình trụ đã cho. A.\(100cm.\)  B.\(60cm.\)  C.\(120cm.\) D.\(50cm.\) … [Đọc thêm...] vềĐề: Một khối gỗ hình trụ có chiều cao 2m người ta xẻ bớt phần vỏ của khối gỗ đó theo bốn mặt phẳng song song với trục để tạo thành một khối gỗ hình hộp chữ nhật có thể tích lớn nhất bằng 1m3. Tính đường kính của khối gỗ hình trụ đã cho.

Đề: Gia đình An xây bể hình trụ có thể tích 150m3. Đáy bể làm bằng bê tông giá 100000 đ/ m2. Phần thân làm bằng tôn giá 90000đ/m2 nắp bằng nhôm giá 120000đ/m2. Hỏi khi chi phí sản xuất bể đạt mức thấp nhất thì tỉ số giữa chiều cao bể và bán kính đáy là bao nhiêu?

Ngày 16/05/2019 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Toán thực tế MAX - MIN

Câu hỏi: Gia đình An xây bể hình trụ có thể tích 150m3. Đáy bể làm bằng bê tông giá 100000 đ/ m2. Phần thân làm bằng tôn giá 90000đ/m2 nắp bằng nhôm giá 120000đ/m2. Hỏi khi chi phí sản xuất bể đạt mức thấp nhất thì tỉ số giữa chiều cao bể và bán kính đáy là bao nhiêu? A. \(\frac{22}{9}\) B.\(\frac{9}{22}\) C. … [Đọc thêm...] vềĐề: Gia đình An xây bể hình trụ có thể tích 150m3. Đáy bể làm bằng bê tông giá 100000 đ/ m2. Phần thân làm bằng tôn giá 90000đ/m2 nắp bằng nhôm giá 120000đ/m2. Hỏi khi chi phí sản xuất bể đạt mức thấp nhất thì tỉ số giữa chiều cao bể và bán kính đáy là bao nhiêu?

Đề: Người ta muốn mạ vàng cho bề mặt phía ngoài của một cái hộp dạng hình hộp đứng không nắp (nắp trên), có đáy là một hình vuông. Tìm chiều cao của hộp để lượng vàng phải dùng để mạ là ít nhất, biết lớp mạ ở mọi nơi như nhau, giao giữa các mặt là không đáng kể và thể tích của hộp là 4 dm3.

Ngày 16/05/2019 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Toán thực tế MAX - MIN

Câu hỏi: Người ta muốn mạ vàng cho bề mặt phía ngoài của một cái hộp dạng hình hộp đứng không nắp (nắp trên), có đáy là một hình vuông. Tìm chiều cao của hộp để lượng vàng phải dùng để mạ là ít nhất, biết lớp mạ ở mọi nơi như nhau, giao giữa các mặt là không đáng kể và thể tích của hộp là 4 dm3. A.1 dm B.1,5 dm C.2 … [Đọc thêm...] vềĐề: Người ta muốn mạ vàng cho bề mặt phía ngoài của một cái hộp dạng hình hộp đứng không nắp (nắp trên), có đáy là một hình vuông. Tìm chiều cao của hộp để lượng vàng phải dùng để mạ là ít nhất, biết lớp mạ ở mọi nơi như nhau, giao giữa các mặt là không đáng kể và thể tích của hộp là 4 dm3.

Đề: Dynamo là một nhà ảo thuật gia đại tài người Anh nhưng người ta thường nói Dynamo làm ma thuật chứ không phải làm ảo thuật. Bất kì màn trình diến nào của anh chảng trẻ tuổi tài cao này đều khiến người xem há hốc miệng kinh ngạc vì nó vượt qua giới hạn của khoa học. Một lần đến New York anh ngấu hứng trình diễn khả năng bay lơ lửng trong không trung của mình bằng cách di truyển từ tòa nhà này đến toà nhà khác và trong quá trình anh di chuyển đấy có một lần anh đáp đất tại một điểm trong khoảng cách của hai tòa nhà. (Biết mọi di chuyển của anh đều là đường thẳng). Biết tòa nhà ban đầu Dynamo đứng có chiều cao là a(m), tòa nhà sau đó Dynamo đến có chiều cao là b(m) (a

Ngày 16/05/2019 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Toán thực tế MAX - MIN

Câu hỏi: Dynamo là một nhà ảo thuật gia đại tài người Anh nhưng người ta thường nói Dynamo làm ma thuật chứ không phải làm ảo thuật. Bất kì màn trình diến nào của anh chảng trẻ tuổi tài cao này đều khiến người xem há hốc miệng kinh ngạc vì nó vượt qua giới hạn của khoa học. Một lần đến New York anh ngấu hứng trình diễn khả năng bay lơ lửng trong không trung của mình … [Đọc thêm...] vềĐề: Dynamo là một nhà ảo thuật gia đại tài người Anh nhưng người ta thường nói Dynamo làm ma thuật chứ không phải làm ảo thuật. Bất kì màn trình diến nào của anh chảng trẻ tuổi tài cao này đều khiến người xem há hốc miệng kinh ngạc vì nó vượt qua giới hạn của khoa học. Một lần đến New York anh ngấu hứng trình diễn khả năng bay lơ lửng trong không trung của mình bằng cách di truyển từ tòa nhà này đến toà nhà khác và trong quá trình anh di chuyển đấy có một lần anh đáp đất tại một điểm trong khoảng cách của hai tòa nhà. (Biết mọi di chuyển của anh đều là đường thẳng). Biết tòa nhà ban đầu Dynamo đứng có chiều cao là a(m), tòa nhà sau đó Dynamo đến có chiều cao là b(m) (a

Đề: Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ nặng \(P(n) = 480 – 20n\) (gam). Hỏi phải thả bao nhiêu con cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá nhất?

Ngày 16/05/2019 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Toán thực tế MAX - MIN

Câu hỏi: Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ nặng \(P(n) = 480 - 20n\) (gam). Hỏi phải thả bao nhiêu con cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá … [Đọc thêm...] vềĐề: Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ nặng \(P(n) = 480 – 20n\) (gam). Hỏi phải thả bao nhiêu con cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá nhất?

Đề: Một khối hộp chữ nhật ABCD.A1B1C1D1 có đáy ABCD là một hình vuông. Biết diện tích toàn phần của hình hộp đó là 32. Hỏi thể tích lớn nhất V của khối hộp ABCD.A1B1C1D1 là bao nhiêu?

Ngày 16/05/2019 Thuộc chủ đề:Trắc nghiệm Giá trị lớn nhất và nhỏ nhất của hàm số Tag với:Toán thực tế MAX - MIN

Câu hỏi: Một khối hộp chữ nhật ABCD.A1B1C1D1 có đáy ABCD là một hình vuông. Biết diện tích toàn phần của hình hộp đó là 32. Hỏi thể tích lớn nhất V của khối hộp ABCD.A1B1C1D1 là bao nhiêu? A.\(V = \frac{{56\sqrt 3 }}{9}\) B.\(V= \frac{{70\sqrt 3 }}{9}\) C.\(V = \frac{{64\sqrt 3 }}{9}\) D.\(V = … [Đọc thêm...] vềĐề: Một khối hộp chữ nhật ABCD.A1B1C1D1 có đáy ABCD là một hình vuông. Biết diện tích toàn phần của hình hộp đó là 32. Hỏi thể tích lớn nhất V của khối hộp ABCD.A1B1C1D1 là bao nhiêu?

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 1664
  • Trang 1665
  • Trang 1666
  • Trang 1667
  • Trang 1668
  • Interim pages omitted …
  • Trang 1754
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.