Câu hỏi: Một trang trại chăn nuôi dự định xây dựng một hầm biogas với thể tích 12m3 để chứa chất thải chăn nuôi và tạo khí sinh học. Dự kiến hầm chứa có dạng hình hộp chữ nhận có chiều sâu gấp rưỡi chiều rộng. Hãy xác định các kích thước đáy (dài, rộng) của hầm biogas để thi công tiết kiệm nguyên vật liệu nhất (không tính đến bề dày của thành bể) ( làm tròn đến 2 chữ … [Đọc thêm...] vềĐề: Một trang trại chăn nuôi dự định xây dựng một hầm biogas với thể tích 12m3 để chứa chất thải chăn nuôi và tạo khí sinh học. Dự kiến hầm chứa có dạng hình hộp chữ nhận có chiều sâu gấp rưỡi chiều rộng. Hãy xác định các kích thước đáy (dài, rộng) của hầm biogas để thi công tiết kiệm nguyên vật liệu nhất (không tính đến bề dày của thành bể) ( làm tròn đến 2 chữ số thập phân sau dấu phẩy).
Đề: Một chất điểm chuyển động theo qui luật \(s = 6{t^2} – {t^3}\)(trong đó t là khoảng thời gian tính bằng giây mà chất điểm bắt đầu chuyển động). Tính thời điểm t (giây) mà tại đó vận tốc (m/s) của chuyển động đạt giá trị lớn nhất.
Câu hỏi: Một chất điểm chuyển động theo qui luật \(s = 6{t^2} - {t^3}\)(trong đó t là khoảng thời gian tính bằng giây mà chất điểm bắt đầu chuyển động). Tính thời điểm t (giây) mà tại đó vận tốc (m/s) của chuyển động đạt giá trị lớn nhất. A.t=2 B.t=4 C.t=1 D.t=3 Hãy chọn trả lời đúng trước … [Đọc thêm...] vềĐề: Một chất điểm chuyển động theo qui luật \(s = 6{t^2} – {t^3}\)(trong đó t là khoảng thời gian tính bằng giây mà chất điểm bắt đầu chuyển động). Tính thời điểm t (giây) mà tại đó vận tốc (m/s) của chuyển động đạt giá trị lớn nhất.
Đề: Một con cá hồi bơi ngược dòng để vượt một khoảng cách là 200km. Vận tốc của dòng nước là 8km/h. nếu vận tốc bơi của cá khi nước đứng yên là v(km/h) thì năng lượng tiêu hao của cá trong 1 giờ được cho bởi công thức:\(E(v) = c{v^3}t\) (trong đó c là một hằng số, E được tính bằng jun). Tìm vận tốc bơi của cá khi nước đứng yên để năng lượng tiêu hao là ít nhất.
Câu hỏi: Một con cá hồi bơi ngược dòng để vượt một khoảng cách là 200km. Vận tốc của dòng nước là 8km/h. nếu vận tốc bơi của cá khi nước đứng yên là v(km/h) thì năng lượng tiêu hao của cá trong 1 giờ được cho bởi công thức:\(E(v) = c{v^3}t\) (trong đó c là một hằng số, E được tính bằng jun). Tìm vận tốc bơi của cá khi nước đứng yên để năng lượng tiêu hao là ít … [Đọc thêm...] vềĐề: Một con cá hồi bơi ngược dòng để vượt một khoảng cách là 200km. Vận tốc của dòng nước là 8km/h. nếu vận tốc bơi của cá khi nước đứng yên là v(km/h) thì năng lượng tiêu hao của cá trong 1 giờ được cho bởi công thức:\(E(v) = c{v^3}t\) (trong đó c là một hằng số, E được tính bằng jun). Tìm vận tốc bơi của cá khi nước đứng yên để năng lượng tiêu hao là ít nhất.
Đề: Cho hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + c\).Nếu phương trình \(f\left( x \right) = 0\) có ba nghiệm phân biệt thì phương trình \(2f\left( x \right).f''\left( x \right) = {\left( {f'\left( x \right)} \right)^2}\)có bao nhiêu nghiệm.
Câu hỏi: Cho hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + c\).Nếu phương trình \(f\left( x \right) = 0\) có ba nghiệm phân biệt thì phương trình \(2f\left( x \right).f''\left( x \right) = {\left( {f'\left( x \right)} \right)^2}\)có bao nhiêu nghiệm. A.3 B.2 C.1 D.4 Hãy chọn trả lời đúng … [Đọc thêm...] vềĐề: Cho hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + c\).Nếu phương trình \(f\left( x \right) = 0\) có ba nghiệm phân biệt thì phương trình \(2f\left( x \right).f''\left( x \right) = {\left( {f'\left( x \right)} \right)^2}\)có bao nhiêu nghiệm.
Đề: Một công ty muốn thiết kế một loại hộp có nắp dạng hình hộp chữ nhật, hai đáy là hình vuông sao cho thể tích của khối hộp được tạo thành là \(12c{m^3}\). Nhà thiết kế muốn chi phí nguyên liệu làm vỏ hộp là ít nhất. Độ dài cạnh đáy a của hộp cần thiết kế là bao nhiêu?
Câu hỏi: Một công ty muốn thiết kế một loại hộp có nắp dạng hình hộp chữ nhật, hai đáy là hình vuông sao cho thể tích của khối hộp được tạo thành là \(12c{m^3}\). Nhà thiết kế muốn chi phí nguyên liệu làm vỏ hộp là ít nhất. Độ dài cạnh đáy a của hộp cần thiết kế là bao nhiêu? A.\(a = \sqrt[3]{{12}}\,\,cm\) B.\(a = … [Đọc thêm...] vềĐề: Một công ty muốn thiết kế một loại hộp có nắp dạng hình hộp chữ nhật, hai đáy là hình vuông sao cho thể tích của khối hộp được tạo thành là \(12c{m^3}\). Nhà thiết kế muốn chi phí nguyên liệu làm vỏ hộp là ít nhất. Độ dài cạnh đáy a của hộp cần thiết kế là bao nhiêu?
Đề: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \sqrt {4 – {x^2}} \) trên đoạn \(\left[ {\sqrt 3 ;2} \right].\)
Câu hỏi: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \sqrt {4 - {x^2}} \) trên đoạn \(\left[ {\sqrt 3 ;2} \right].\) A. \(\mathop {\max }\limits_{\left[ {\sqrt 3 ;2} \right]} y = \sqrt 2 \) và \(\mathop {\min }\limits_{\left[ {\sqrt 3 ;2} \right]} y = 0.\) B. \(\mathop {\max }\limits_{\left[ {\sqrt 3 ;2} \right]} y = 2\) và \(\mathop {\min … [Đọc thêm...] vềĐề: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \sqrt {4 – {x^2}} \) trên đoạn \(\left[ {\sqrt 3 ;2} \right].\)
Đề: Tìm m để hàm số \(y = \frac{{mx}}{{{x^2} + 1}}\) đạt giá trị lớn nhất tại x = 1 trên đoạn [-2; 2] ?
Câu hỏi: Tìm m để hàm số \(y = \frac{{mx}}{{{x^2} + 1}}\) đạt giá trị lớn nhất tại x = 1 trên đoạn [-2; 2] ? A.\(m = - 2\) B.m C.m > 0 D.m = 2 Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài. … [Đọc thêm...] vềĐề: Tìm m để hàm số \(y = \frac{{mx}}{{{x^2} + 1}}\) đạt giá trị lớn nhất tại x = 1 trên đoạn [-2; 2] ?
Đề: Một người muốn làm một chiếc thùng dạng hình hộp chữ nhật không nắp, đáy là hình vuông và có thể tích bằng \(2,16{m^3}.\) Biết giá của vật liệu làm đáy và mặt bên của thùng lần lượt là 90000 đồng/m2 và 36000 đồng/m2. Để làm được chiếc thùng với chi phí mua vật liệu thấp nhất thì người thợ phải chọn các kích thước của chiếc thùng là bao nhiêu?
Câu hỏi: Một người muốn làm một chiếc thùng dạng hình hộp chữ nhật không nắp, đáy là hình vuông và có thể tích bằng \(2,16{m^3}.\) Biết giá của vật liệu làm đáy và mặt bên của thùng lần lượt là 90000 đồng/m2 và 36000 đồng/m2. Để làm được chiếc thùng với chi phí mua vật liệu thấp nhất thì người thợ phải chọn các kích thước của chiếc thùng là bao nhiêu? A. Cạnh … [Đọc thêm...] vềĐề: Một người muốn làm một chiếc thùng dạng hình hộp chữ nhật không nắp, đáy là hình vuông và có thể tích bằng \(2,16{m^3}.\) Biết giá của vật liệu làm đáy và mặt bên của thùng lần lượt là 90000 đồng/m2 và 36000 đồng/m2. Để làm được chiếc thùng với chi phí mua vật liệu thấp nhất thì người thợ phải chọn các kích thước của chiếc thùng là bao nhiêu?
Đề: Giá trị nhỏ nhất của hàm số \(f\left( x \right) = \sqrt {{x^2} + 1} – x\ln \left( {x + \sqrt {{x^2} + 1} } \right)\) trên đoạn \(\left[ { – 1;1} \right]\) là:
Câu hỏi: Giá trị nhỏ nhất của hàm số \(f\left( x \right) = \sqrt {{x^2} + 1} - x\ln \left( {x + \sqrt {{x^2} + 1} } \right)\) trên đoạn \(\left[ { - 1;1} \right]\) là: A.\(\sqrt 2 \) B.\(\sqrt 2 - 1\) C.\(\sqrt 2 - \ln \left( {1 + \sqrt 2 } \right)\) D. \(\sqrt 2 - \ln \left( {\sqrt 2 - 1} … [Đọc thêm...] vềĐề: Giá trị nhỏ nhất của hàm số \(f\left( x \right) = \sqrt {{x^2} + 1} – x\ln \left( {x + \sqrt {{x^2} + 1} } \right)\) trên đoạn \(\left[ { – 1;1} \right]\) là:
Đề: Tìm tất cả các giá trị thực của tham số m để phương trình \(2x – 1 = m\left( {x – 1} \right)\) có nghiệm thuộc đoạn \(\left[ { – 1;0} \right].\)
Câu hỏi: Tìm tất cả các giá trị thực của tham số m để phương trình \(2x - 1 = m\left( {x - 1} \right)\) có nghiệm thuộc đoạn \(\left[ { - 1;0} \right].\) A.\(m \ge 1\) B.\(m \le \frac{3}{2}\) C.\(1 \le m \le 2\) D.\(1 \le m \le \frac{3}{2}\) Hãy chọn trả lời đúng trước khi xem đáp án và lời … [Đọc thêm...] vềĐề: Tìm tất cả các giá trị thực của tham số m để phương trình \(2x – 1 = m\left( {x – 1} \right)\) có nghiệm thuộc đoạn \(\left[ { – 1;0} \right].\)