• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Toán lớp 11 / Bài 5. Xác suất của biến cố – Chương 2 – Đại số 11

Bài 5. Xác suất của biến cố – Chương 2 – Đại số 11

31/10/2019 by admin Để lại bình luận Thuộc chủ đề:Toán lớp 11 Tag với:Học chương 2 đại số 11, Xác suất

Mục lục:

  1. 1. Xác suất của biến cố
  2. 2. Tính chất của xác suất
  3. Quy tắc cộng xác suất
  4. Quy tắc nhân xác suất
  5. Bài tập minh họa
  6. Ví dụ 2:
  7. Ví dụ 3:
  8. Ví dụ 4:

1. Xác suất của biến cố

a) Định nghĩa cổ điển của xác suất

Cho T là một phép thử ngẫu nhiên với không gian mẫu \(\Omega \) là một tập hữu hạn. Giả sử A là một biến cố được mô ta bằng \({\Omega _A} \subset \Omega \). Xác suất của biến cố A,  kí hiệu bởi P(A), được cho bởi công thức

\(P(A) = \frac{{\left| {{\Omega _A}} \right|}}{{\left| \Omega  \right|}} = \)\(\frac{{{\rm{So \, ket\, qua\, thuan\, loi\, cho\, A}}}}{{{\rm{So\, ket\, qua\, co\, the\, xay\, ra}}}}\).

Chú ý: \( \bullet \) Xác suất của biến cố A chỉ phụ thuộc vào số kết quả thuận lợi cho A, nên ta đồng nhất \({\Omega _A}\) với A nên ta có : \(P(A) = \frac{{n(A)}}{{n(\Omega )}}\)

\( \bullet \) \(P(\Omega ) = 1,{\rm{ }}P(\emptyset ) = 0,{\rm{ }}0 \le P(A) \le 1\)

b) Định nghĩa thống kê của xác suất

Xét phép thử ngẫu nhiên T và một biến cố A liên quan tới phép thử đó. Nếu tiến hành lặp đi lặp lại N lần phép thử T và thống kê số lần xuất hiện của A

Khi đó xác suất của biến cố A được định nghĩa như sau:

\(P(A) = \)\(\frac{{{\rm{So \, lan \, xuat \, hien \, cua \, bien \, co \, A}}}}{N}\).

2. Tính chất của xác suất

a) \(P(\emptyset ) = \,0,P(\Omega ) = \,1\)

b) \(0 \le P(A) \le \,\,1\), với mọi biến cố A.

c) Nếu A và B xung khắc thì:

\(P(A \cup B)\, = \,P(A)\, + \,P(B)\,\) (công thức cộng xác suất).

d) Với mọi biến cố A ta có:

\({\rm{P(}}\overline {\rm{A}} {\rm{) = }}\,{\rm{1 – }}\,{\rm{P(A)}}\)

Quy tắc cộng xác suất

– Hai biến cố \(A,B\) được gọi là xung khắc nếu biến cố này xảy ra thì biến cố kia không xảy ra.

+) Nếu \(A \cap B = \emptyset \) thì \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\)

+) Nếu \(A,B\) là hai biến cố bất kì thì \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) – P\left( {A \cap B} \right)\)

Ví dụ: Một chiếc hộp có chín thẻ đánh số từ \(1\) đến \(9\). Rút ngẫu nhiên hai thẻ rồi nhân hai số ghi trên hai thẻ với nhau. Tính xác suất để kết quả nhận được là một số chẵn.

Giải:

Kết quả nhận được là số chẵn khi và chỉ khi trong hai thẻ có ít nhất một thẻ chẵn.

Gọi \(A\) là biến cố “Rút được một thẻ chẵn và một thẻ lẻ”, \(B\) là biến cố “Cả hai thẻ được rút là thẻ chẵn”.

Khi đó biến cố “Tích hai số ghi trên hai thẻ là một số chẵn” là \(A \cup B\).

Do hai biến cố xung khắc nên \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\).

Vì có \(4\) thẻ chẵn và \(5\) thẻ lẻ nên ta có:

\(P\left( A \right) = \dfrac{{C_5^1.C_4^1}}{{C_9^2}} = \dfrac{{20}}{{36}}\), \(P\left( B \right) = \dfrac{{C_4^2}}{{C_9^2}} = \dfrac{6}{{36}}\).

Do đó:

\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) \) \(= \dfrac{{20}}{{36}} + \dfrac{6}{{36}} = \dfrac{{26}}{{36}} = \dfrac{{13}}{{18}}\).

Quy tắc nhân xác suất

– Hai biến cố \(A,B\) được gọi là độc lập nếu sự xảy ra hay không xảy ra của \(A\) không làm ảnh hưởng tới xác suất xảy ra của biến cố \(B\).

– Nếu hai biến cố \(A,B\) độc lập với nhau thì \(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\).

Ví dụ: Một chiếc máy có hai động cơ \(I\) và \(II\) hoạt động độc lập với nhau. Xác suất để động cơ \(I\) chạy tốt là \(0,8\) và xác suất để động cơ \(II\) chạy tốt là \(0,7\). Hãy tính xác suất để cả hai động cơ đều chạy tốt.

Giải:

Gọi \(A\) là biến cố: “Động cơ \(I\) chạy tốt”, \(B\) là biến cố: “Động cơ \(II\) chạy tốt”, \(C\) là biến cố: “Cả hai động cơ đều chạy tốt”.

Ta thấy \(A,B\) là hai biến cố độc lập với nhau và \(C = AB\). Theo công thức nhân xác suất ta có:

\(P\left( C \right) = P\left( {AB} \right) = P\left( A \right).P\left( B \right) = 0,8.0,7 = 0,56\).

Bài tập minh họa

Ví dụ 1:

Bộ bài tú – lơ khơ có 52 quân bài. Rút ngẫu nhiên ra 4 quân bài. Tìm xác suất của các biến cố:

A: “Rút ra được tứ quý K ‘’.

B: “4 quân bài rút ra có ít nhất một con Át”.

C: “4 quân bài lấy ra có ít nhất hai quân bích’’.

Hướng dẫn giải:

Ta có số cách chọn ngẫu nhiên 4 quân bài là: \(C_{52}^4 = 270725\)

Suy ra \(n(\Omega ) = 270725\)

Vì bộ bài chỉ có 1 tứ quý K nên ta có \(n(A) = 1\)

Vậy \(P(A) = \frac{1}{{270725}}\).

Vì có \(C_{48}^4\) cách rút 4 quân bài mà không có con Át nào,

suy ra \(N(b) = C_{52}^4 – C_{48}^4\)\( \Rightarrow P(B) = \frac{{15229}}{{54145}}\).

Vì trong bộ bài có 13 quân bích, số cách rút ra bốn quân bài mà trong đó số quân bích không ít hơn 2 là: \(C_{13}^2.C_{39}^2 + C_{13}^3C_{39}^1 + C_{13}^4.C_{39}^0 = 69667\)

Suy ra \(n(C) = 69667 \Rightarrow P(C) = \frac{{5359}}{{20825}}\).

Ví dụ 2:

Trong một chiếc hộp có 20 viên bi, trong đó có 8 viên bi màu đỏ, 7 viên bi màu xanh và 5 viên bi màu vàng. Lấy ngẫu nhiên ra 3 viên bi. Tìm xác suất để:

a) 3 viên bi lấy ra đều màu đỏ

b) 3 viên bi lấy ra có không quá hai màu.

Hướng dẫn giải:

Gọi  biến cố A :“ 3 viên bi lấy ra đều màu đỏ”

B : “3 viên bi lấy ra có không quá hai màu”

Số các lấy 3 viên bi từ 20 viên bi là: \(C_{20}^3\) nên ta có: \(\left| \Omega  \right| = C_{20}^3 = 1140\)

a)  Số cách lấy 3 viên bi màu đỏ là: \(C_8^3 = 56\) nên \(\left| {{\Omega _A}} \right| = 56\)

Do đó: \(P(A) = \frac{{\left| {{\Omega _A}} \right|}}{{\left| \Omega  \right|}} = \frac{{56}}{{1140}} = \frac{{14}}{{285}}\).

b) Ta có:

\( \bullet \) Số cách lấy 3 viên bi chỉ có một màu: \(C_8^3 + C_7^3 + C_5^3 = 101\)

\( \bullet \) Số các lấy 3  viên bi có đúng hai màu

Đỏ và xanh: \(C_{15}^3 – \left( {C_8^3 + C_7^3} \right)\)

Đỏ và vàng: \(C_{13}^3 – \left( {C_8^3 + C_5^3} \right)\)

Vàng và xanh: \(C_{12}^3 – \left( {C_5^3 + C_7^3} \right)\)

Nên số cách lấy 3 viên bi có đúng hai màu:

\(C_{15}^3 + C_{13}^3 + C_{12}^3 – 2\left( {C_8^3 + C_7^3 + C_5^3} \right) = 759\)

Do đó: \(\left| {{\Omega _B}} \right| = 860\). Vậy \(P(B) = \frac{{\left| {{\Omega _B}} \right|}}{{\left| \Omega  \right|}} = \frac{{43}}{{57}}\).

Ví dụ 3:

Một con súc sắc không đồng chất sao cho mặt bốn chấm xuất hiện nhiều gấp 3 lần mặt khác, các mặt còn lại đồng khả năng. Tìm xác suất để xuất hiện một mặt chẵn.

Hướng dẫn giải:

Gọi \({A_i}\) là biến cố xuất hiện mặt \(i\) chấm \((i = 1,2,3,4,5,6)\)

Ta có \(P({A_1}) = P({A_2}) = P({A_3}) = P({A_5}) = P({A_6}) = \frac{1}{3}P({A_4}) = x\)

Do \(\sum\limits_{k = 1}^6 {P({A_k}) = 1 \Rightarrow 5x + 3x = 1 \Rightarrow x = \frac{1}{8}} \)

Gọi A là biến cố xuất hiện mặt chẵn, suy ra \(A = {A_2} \cup {A_4} \cup {A_6}\)

Vì cá biến cố \({A_i}\) xung khắc nên:

\(P(A) = P({A_2}) + P({A_4}) + P({A_6}) = \frac{1}{8} + \frac{3}{8} + \frac{1}{8} = \frac{5}{8}.\)

Ví dụ 4:

Xác suất sinh con trai trong mỗi lần sinh là 0,51 .Tìm các suất sao cho 3 lần sinh có ít nhất 1 con trai.

Hướng dẫn giải:

Gọi A là biến cố ba lần sinh có ít nhất 1 con trai, suy ra \(\overline A \) là xác suất 3 lần sinh toàn con gái.

Gọi \({B_i}\) là biến cố lần thứ i sinh con gái (\[i = 1,2,3\])

Suy ra \(P({B_1}) = P({B_2}) = P({B_3}) = 0,49\)

Ta có:  \(\overline A  = {B_1} \cap {B_2} \cap {B_3}\)

\( \Rightarrow P\left( A \right) = 1 – P\left( {\overline A } \right) = 1 – P\left( {{B_1}} \right)P\left( {{B_2}} \right)P\left( {{B_3}} \right) = 1 – {\left( {0,49} \right)^3} \approx 0,88.\)

Bài liên quan:

  • Xác suất hay và khó của Chinh Phục Olympic Toán
  • [VDC – Xác suất 2020] Gọi S là tập hợp các số tự nhiên có 9 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ tập S. Xác suất để số được có đúng bốn chữ số lẻ sao cho chữ số 0 luôn đứng giữa hai chữ số lẻ bằng
  • Chuyên đề xác suất ôn thi tốt nghiệp 2020
  • Câu 36: (MH Toan 2020) Chọn ngẫu nhiên một số từ tập các số tự nhiên có ba chữ số đôi một khác nhau. Xác suất để số được chọn có tổng các chữ số là chẵn bằng
  • Tự học Bài Xác suất của biến cố – Toán 11
  • Ôn tập Chương 2 – Đại số 11
  • Bài 4. Phép thử và biến cố – Chương 2 – Đại số 11
  • Bài 3. Nhị thức Niu-tơn – Chương 2 – Đại số 11
  • Bài 2. Hoán vị – Chỉnh hợp – Tổ hợp – Chương 2 – Đại số 11
  • Bài 1. Quy tắc đếm – Chương 2 – Đại số 11

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2020) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.