• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Bất đẳng thức - Bài tập tự luận / Đề bài: Chứng minh rằng với $a, b, c, d, e$ là các số thực nằm trong khoảng $(0, 1)$ thì:    \(\left( {1 – a} \right)\left( {1 – b} \right)\left( {1 – c} \right)\left( {1 – d} \right)\left( {1 – e} \right) > 1 – a – b – c – d – e\)

Đề bài: Chứng minh rằng với $a, b, c, d, e$ là các số thực nằm trong khoảng $(0, 1)$ thì:    \(\left( {1 – a} \right)\left( {1 – b} \right)\left( {1 – c} \right)\left( {1 – d} \right)\left( {1 – e} \right) > 1 – a – b – c – d – e\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh rằng với $a, b, c, d, e$ là các số thực nằm trong khoảng $(0, 1)$ thì:    \(\left( {1 – a} \right)\left( {1 – b} \right)\left( {1 – c} \right)\left( {1 – d} \right)\left( {1 – e} \right) > 1 – a – b – c – d – e\)

Bat dang thuc

Lời giải

Đề bài:
Chứng minh rằng với $a, b, c, d, e$ là các số thực nằm trong khoảng $(0, 1)$ thì:    \(\left( {1 – a} \right)\left( {1 – b} \right)\left( {1 – c} \right)\left( {1 – d} \right)\left( {1 – e} \right) > 1 – a – b – c – d – e\)
Lời giải

Ta chứng minh kết quả tổng quát như sau:
Với \({a_1},{a_2},…{a_n} \in \left( {0;1} \right)\left( {n \ge 2} \right)\)thì
\(\left( {1 – {a_1}} \right)\left( {1 – {a_2}} \right)…\left( {1 – {a_n}} \right) > 1 – {a_1} – {a_2} – … – {a_n}\)
Chứng minh bằng quy nạp toán học theo $n$.
–  Với \(n = 2 \Rightarrow \left( {1 – {a_1}} \right)\left( {1 – {a_2}} \right) = 1 – {a_1} – {a_2} + {a_1}{a_2} > 1 – {a_1} – {a_2}\)
–  Giả sử khẳng định đúng với $n = k$, ta cũng chứng minh khẳng định cũng đúng với $n = k + 1$. Do khẳng định đúng với  $n = k$ nên:\(\left( {1 – {a_1}} \right)\left( {1 – {a_2}} \right)…\left( {1 – {a_k}} \right) > 1 – {a_1} – {a_2} – … – {a_k}\)
Vì \(0 0\). Do đó \(\left( {1 – {a_1}} \right)\left( {1 – {a_2}} \right)…\left( {1 – {a_k}} \right)\left( {1 – {a_{k + 1}}} \right) > \left( {1 – {a_1} – {a_2} – … – {a_k}} \right)\left( {1 – {a_{k + 1}}} \right)\)
Mà vế phải bằng \(1 – {a_1} – {a_2} – … – {a_k} – {a_{k + 1}} + \left( {{a_1} + {a_2} + … + {a_k}} \right){a_{k + 1}} > 1 – {a_1} – {a_2} – … – {a_k} – {a_{k + 1}}\)
    \( \Rightarrow \left( {1 – {a_1}} \right)\left( {1 – {a_2}} \right)…\left( {1 – {a_{k + 1}}} \right) > 1 – {a_1} – {a_2} – … – {a_{k + 1}}\)
Vậy khẳng định đúng với \(\forall n \ge 2\)

=========
Chuyên mục: Các dạng bất đẳng thức khác

Bài liên quan:

  1. Đề bài: Cho $n$ số thực không âm $x_1, x_2, …, x_n$ thỏa mãn điều kiện: $x_1+x_2+…+x_n\leq  \frac{1}{2} $Chứng minh rằng : $(1-x_1)(1-x_2)…(1-x_n)\geq  \frac{1}{2} $
  2. Đề bài: Chứng minh rằng với mọi số nguyên $n \ge 3$ ta đều có:        ${n^{n + 1}} > {(n + 1)^n}$
  3. Đề bài: Cho $x,y,z$ dương và $x(x+y+z)=3yz$. Chứng minh:$(x+y)^{3}+(x+z)^{3}+3(x+y)(y+z)(z+x)\leq 5 (y+z)^{3} $
  4. Đề bài:    Cho $b>c>d$. Chứng minh rằng với mọi $a$ ta luôn có:        $(a+b+c+d)^2>8(ac+bd)          (1)$
  5. Đề bài: Cho $\begin{cases}a>0 \\ a^{2}=bc \\ a+b+c=abc \end{cases}$Chứng minh rằng: $b,c>0$.
  6. Đề bài: Tìm tất cả các giá trị thực của $x$ sao cho bất đẳng thức sau đúng với mọi số không âm $a,b,c$$[a^2+b^2+(x-1)c^2]\times [a^2+c^2+(x-1)b^2]\times [b^2+c^2+(x-1)a^2]$ $\leq (a^2+bcx)(b^2+acx)(c^2+abx)   (1)$
  7. Đề bài: Cho $a,b,c >0, a+b=c$.Chứng minh rằng:$\sqrt[4]{a^{3}}+\sqrt[4]{b^{3}}>\sqrt[4]{c^{3}}$
  8. Đề bài: Cho $ x_1,x_2, … , x_{2008} \in [\frac{\pi}{6};\frac{\pi}{2}]$. Tìm giá trị lớn nhất của: $y=(\sin x_1+\sin x_2+ … +\sin x_{2008}).\left ( \frac{1}{\sin x_1} + \frac{1}{\sin x_2}+…+ \frac{1}{\sin x_{2008}}\right )$
  9. Đề bài: Chứng minh bất đẳng thức:Nếu $a+b \geq  2$ thì $\frac{a^{n}+b^{n}}{2}\leq  \frac{a+b}{2}\frac{a^{n}+b^{n}}{2}\leq \frac{a^{n+1}+b^{n+1}}{2}  $
  10. Đề bài: Chứng minh rằng: $-(1+x^{2})^{n}\leq (1-x^{2})^{n}+(2x)^{n}\leq (1+x^{2})^{n},\forall x \in R,\forall n\in N$\$\left\{ \begin{array}{l}0,1 \end{array} \right.\left. \right \}$
  11. Đề bài: Cho $|x|\leq 1,n\in Z,n \geq 2$.Chứng minh rằng:$(1+x)^{n}+(1-x)^{n}\leq 2^{n}$
  12. Đề bài: Chứng minh rằng:$n^{n} > (n+1) ^{n-1} .\forall n \in Z,n \geq 2$
  13. Đề bài: Chứng minh rằng trong $3$ bất đẳng thức sau đây ít nhất có $1$ bất đẳng thức đúng:$2(a^{2}+b^{2})\geq(b+c)^{2};2(b^{2}+c^{2})\geq(c+a)^{2};2(c^{2}+a^{2})\geq(a+b^{2})$
  14. Đề bài: Cho $0\leq a,b,c,d\leq 1$.Chứng minh rằng:$\frac{a}{bcd+1}+\frac{b}{cda+1}+\frac{c}{dab+1}+\frac{d}{abc+1}\leq 3$
  15. Đề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq  1                                               b) \sin^{10}x+\cos^{11}x \leq \ 1$ c)$(1+x)^{n}+(1-x)^{n} \leq  2^{n}; (|x|\leq  1), n \geq   1$

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.