• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Tiệm cận

Cho hàm số \(y = \frac{{x – 1}}{{x + 2}}\) có đồ thị \(\left( C \right)\), gọi \(d\) là tiếp tuyến với \(\left( C \right)\) tại điểm có hoành độ bằng \(m – 2\). Biết đường thẳng \(d\) cắt tiệm cận đứng của \(\left( C \right)\) tại điểm \(A\left( {{x_1}; {y_1}} \right)\) và cắt tiệm cận ngang của \(\left( C \right)\) tại điểm \(B\left( {{x_2}; {y_2}} \right)\). Gọi \(S\) là tập hợp các số \(m\) sao cho \({x_2} + {y_1} = – 5\). Tính tổng bình phương các phần tử của \(S\).

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Câu hỏi: Cho hàm số \(y = \frac{{x - 1}}{{x + 2}}\) có đồ thị \(\left( C \right)\), gọi \(d\) là tiếp tuyến với \(\left( C \right)\) tại điểm có hoành độ bằng \(m - 2\). Biết đường thẳng \(d\) cắt tiệm cận đứng của \(\left( C \right)\) tại điểm \(A\left( {{x_1}; {y_1}} \right)\) và cắt tiệm cận ngang của \(\left( C \right)\) tại điểm \(B\left( {{x_2}; {y_2}} \right)\). Gọi … [Đọc thêm...] vềCho hàm số \(y = \frac{{x – 1}}{{x + 2}}\) có đồ thị \(\left( C \right)\), gọi \(d\) là tiếp tuyến với \(\left( C \right)\) tại điểm có hoành độ bằng \(m – 2\). Biết đường thẳng \(d\) cắt tiệm cận đứng của \(\left( C \right)\) tại điểm \(A\left( {{x_1}; {y_1}} \right)\) và cắt tiệm cận ngang của \(\left( C \right)\) tại điểm \(B\left( {{x_2}; {y_2}} \right)\). Gọi \(S\) là tập hợp các số \(m\) sao cho \({x_2} + {y_1} = – 5\). Tính tổng bình phương các phần tử của \(S\).

Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên như sau:

Đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Câu hỏi: Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên như sau: Đồ thị hàm số đã cho có bao nhiêu đường tiệm cận? A. \(1\) B. \(2\) C. \(3\) D. \(0\) LỜI GIẢI CHI TIẾT Vì \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} y = - \infty \\\mathop {\lim }\limits_{x \to {0^ - }} y = + \infty \\\mathop {\lim … [Đọc thêm...] vềCho hàm số \(y = f\left( x \right)\)có bảng biến thiên như sau:

Đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

Tìm tất cả các giá trị của tham số \(m\)để đồ thị hàm số \(y = \frac{{\sqrt {x – 1} }}{{x – m}}\) có hai đường tiệm cận.

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Câu hỏi: Tìm tất cả các giá trị của tham số \(m\)để đồ thị hàm số \(y = \frac{{\sqrt {x - 1} }}{{x - m}}\) có hai đường tiệm cận. A. \(m > 1\). B. \(m < 1\). C. \(m \ge 1\). D. \(m \le 1\). LỜI GIẢI CHI TIẾT ĐK: \(x \ge 1\). Nhận thấy hàm số có bậc tử nhỏ hơn bậc mẫu nên đồ thị hàm số luôn có một tiệm cận ngang \(y = 0\). Do đó, để đồ thị hàm số … [Đọc thêm...] vềTìm tất cả các giá trị của tham số \(m\)để đồ thị hàm số \(y = \frac{{\sqrt {x – 1} }}{{x – m}}\) có hai đường tiệm cận.

Cho hàm số \(y = \frac{{\sqrt {{x^2} + 1} }}{{x + 1}}\,\left( C \right)\). Tiệm cận ngang của đồ thị hàm số (C) là

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận nhận biết

Câu hỏi: Cho hàm số \(y = \frac{{\sqrt {{x^2} + 1} }}{{x + 1}}\,\left( C \right)\). Tiệm cận ngang của đồ thị hàm số (C) là A. \(y = 1\). B. \(y = - 1\). C. \(x = 1\) và \(x = - 1\). D. \(y = 1\) và \(y = - 1\). LỜI GIẢI CHI TIẾT \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 1} }}{{x + 1}} = … [Đọc thêm...] vềCho hàm số \(y = \frac{{\sqrt {{x^2} + 1} }}{{x + 1}}\,\left( C \right)\). Tiệm cận ngang của đồ thị hàm số (C) là

Cho hàm số \(y = \frac{{4x – 3}}{{x – 3}}\) có đồ thị \(\left( C \right)\). Biết đồ thị \(\left( C \right)\) có hai điểm \(M,N\) thỏa mãn tổng khoảng cách từ \(M\) hoặc \(N\) đến hai đường tiệm cận là nhỏ nhất. Khi đó \(MN\) có giá trị bằng

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Câu hỏi: Cho hàm số \(y = \frac{{4x - 3}}{{x - 3}}\) có đồ thị \(\left( C \right)\). Biết đồ thị \(\left( C \right)\) có hai điểm \(M,N\) thỏa mãn tổng khoảng cách từ \(M\) hoặc \(N\) đến hai đường tiệm cận là nhỏ nhất. Khi đó \(MN\) có giá trị bằng A. \(MN = 4\sqrt 2 \). B. \(MN = 6\). C. \(MN = 4\sqrt 3 \). D. \(MN = 6\sqrt 2 \). LỜI GIẢI CHI TIẾT \(M … [Đọc thêm...] vềCho hàm số \(y = \frac{{4x – 3}}{{x – 3}}\) có đồ thị \(\left( C \right)\). Biết đồ thị \(\left( C \right)\) có hai điểm \(M,N\) thỏa mãn tổng khoảng cách từ \(M\) hoặc \(N\) đến hai đường tiệm cận là nhỏ nhất. Khi đó \(MN\) có giá trị bằng

Tìm tất cả các giá trị của tham số \(m\)để đồ thị hàm số \(y = \frac{{x + 1}}{{{x^2} + 2mx + 1}}\) có hai đường tiệm cận đứng.

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Câu hỏi: Tìm tất cả các giá trị của tham số \(m\)để đồ thị hàm số \(y = \frac{{x + 1}}{{{x^2} + 2mx + 1}}\) có hai đường tiệm cận đứng. A. \(\left[ \begin{array}{l}m > 1\\m < - 1\end{array} \right.\). B. \(m > 1\). C. \(m < - 1\). D. \(m \ne - 1\). LỜI GIẢI CHI TIẾT Để đồ thị hàm số có hai đường tiệm cận đứng khi và chỉ khi phương trình: … [Đọc thêm...] vềTìm tất cả các giá trị của tham số \(m\)để đồ thị hàm số \(y = \frac{{x + 1}}{{{x^2} + 2mx + 1}}\) có hai đường tiệm cận đứng.

Tìm tập hợp các giá trị m để đồ thị hàm số \(y = \frac{{\sqrt {4 – {x^2}} + 1}}{{m{x^2} + 6x + m}}\) có đúng hai đường tiệm cận.

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Câu hỏi: Tìm tập hợp các giá trị m để đồ thị hàm số \(y = \frac{{\sqrt {4 - {x^2}} + 1}}{{m{x^2} + 6x + m}}\) có đúng hai đường tiệm cận. A. \(m \in \left( { - 3; - \frac{{12}}{5}} \right] \cup \left[ {\frac{{12}}{5};3} \right)\). B. \(m \in \left( { - 3;3} \right)\). C. \(m \in \left[ { - 3; - \frac{{12}}{5}} \right] \cup \left[ {\frac{{12}}{5};3} \right]\). D. … [Đọc thêm...] vềTìm tập hợp các giá trị m để đồ thị hàm số \(y = \frac{{\sqrt {4 – {x^2}} + 1}}{{m{x^2} + 6x + m}}\) có đúng hai đường tiệm cận.

Tìm tập hợp các giá trị của tham số \(m\) để đồ thị hàm số \(y = \frac{{\sqrt {\left( {x – 1} \right)\left( {{x^2} + 3x + 3} \right)} }}{{m{x^2} + 2x – 3}}\) có đúng 3 đường tiệm cận.

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Câu hỏi: Tìm tập hợp các giá trị của tham số \(m\) để đồ thị hàm số \(y = \frac{{\sqrt {\left( {x - 1} \right)\left( {{x^2} + 3x + 3} \right)} }}{{m{x^2} + 2x - 3}}\) có đúng 3 đường tiệm cận. A. \(m \in \left( { - \frac{1}{3};0} \right)\). B. \(m \in \left( { - \frac{1}{3}; + \infty } \right)\) C. \(m \in \left[ { - \frac{1}{3};0} \right)\). D. \(m \in \left( { - … [Đọc thêm...] vềTìm tập hợp các giá trị của tham số \(m\) để đồ thị hàm số \(y = \frac{{\sqrt {\left( {x – 1} \right)\left( {{x^2} + 3x + 3} \right)} }}{{m{x^2} + 2x – 3}}\) có đúng 3 đường tiệm cận.

Cho đồ thị hàm số \(y = f\left( x \right)\) như hình bên. Khẳng định nào sau đây là đúng?

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Câu hỏi: Cho đồ thị hàm số \(y = f\left( x \right)\) như hình bên. Khẳng định nào sau đây là đúng? A. Đồ thị hàm số có tiệm cận đứng \(x = 0\), tiệm cận ngang \(y = 1\) B. Hàm số có hai cực trị C. Hàm số đồng biến trong khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\) D. Đồ thị hàm số chỉ có một tiệm cận LỜI GIẢI CHI TIẾT … [Đọc thêm...] vềCho đồ thị hàm số \(y = f\left( x \right)\) như hình bên. Khẳng định nào sau đây là đúng?

Cho hàm số \(y = \frac{{1 – 3x}}{{3 – x}}\) có đồ thị \(\left( C \right)\). Điểm \(M\) có hoành độ dương nằm trên \(\left( C \right)\) sao cho khoảng cách từ \(M\) đến tiệm cận đứng gấp hai lần khoảng cách từ \(M\) đến tiệm cận ngang của \(\left( C \right)\). Khoảng cách từ \(M\) đến tâm đối xứng của \(\left( C \right)\) bằng

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Câu hỏi: Cho hàm số \(y = \frac{{1 - 3x}}{{3 - x}}\) có đồ thị \(\left( C \right)\). Điểm \(M\) có hoành độ dương nằm trên \(\left( C \right)\) sao cho khoảng cách từ \(M\) đến tiệm cận đứng gấp hai lần khoảng cách từ \(M\) đến tiệm cận ngang của \(\left( C \right)\). Khoảng cách từ \(M\) đến tâm đối xứng của \(\left( C \right)\) bằng A. \(3\sqrt 2 \). B. \(2\sqrt 5 … [Đọc thêm...] vềCho hàm số \(y = \frac{{1 – 3x}}{{3 – x}}\) có đồ thị \(\left( C \right)\). Điểm \(M\) có hoành độ dương nằm trên \(\left( C \right)\) sao cho khoảng cách từ \(M\) đến tiệm cận đứng gấp hai lần khoảng cách từ \(M\) đến tiệm cận ngang của \(\left( C \right)\). Khoảng cách từ \(M\) đến tâm đối xứng của \(\left( C \right)\) bằng

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Trang 6
  • Interim pages omitted …
  • Trang 13
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.