• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Tiệm cận

Một công ty sản xuất máy tính đã xác định được rằng, tính trung bình một nhân viên có thể lắp ráp được $N\left( x \right)=\dfrac{50x}{x+4}\left( x\ge 0 \right)$ bộ phận mỗi ngày sau $x$ ngày đào tạo

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Một công ty sản xuất máy tính đã xác định được rằng, tính trung bình một nhân viên có thể lắp ráp được $N\left( x \right)=\dfrac{50x}{x+4}\left( x\ge 0 \right)$ bộ phận mỗi ngày sau $x$ ngày đào tạo. Xem $y=N\left( x \right)$ là một hàm số xác định trên $\left[ 0;+\infty \right)$, khi đó tiệm cận ngang của đồ thị hàm số làĐáp án: 50Lời giải: Ta có $\lim\limits_{x\to +\infty … [Đọc thêm...] vềMột công ty sản xuất máy tính đã xác định được rằng, tính trung bình một nhân viên có thể lắp ráp được $N\left( x \right)=\dfrac{50x}{x+4}\left( x\ge 0 \right)$ bộ phận mỗi ngày sau $x$ ngày đào tạo

Số lượng sản phẩm bán được của một công ty trong $x$ ( tháng) được tính theo công thức $S\left( x \right)=200\left( 5-\dfrac{9}{2+x} \right)$,trong đó $x\ge 1$

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Số lượng sản phẩm bán được của một công ty trong $x$ ( tháng) được tính theo công thức $S\left( x \right)=200\left( 5-\dfrac{9}{2+x} \right)$,trong đó $x\ge 1$. Xem $y=S\left( x \right)$ là một hàm số xác định trên nửa khoảng $\left[ 1;+\infty \right)$, hãy tìm tiệm cận ngang của đồ thị hàm số đó.Đáp án: 1000Lời giải: Bài giảiTa có:$\lim\limits_{x\to +\infty }S\left( x … [Đọc thêm...] vềSố lượng sản phẩm bán được của một công ty trong $x$ ( tháng) được tính theo công thức $S\left( x \right)=200\left( 5-\dfrac{9}{2+x} \right)$,trong đó $x\ge 1$

Giả sử dân số của một huyện sau $t$ năm kể từ năm 2024 được mô tả bởi hàm số $f\left( t \right)=\dfrac{20t+5}{t+2},t\ge 0$ (nghìn người)

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Giả sử dân số của một huyện sau $t$ năm kể từ năm 2024 được mô tả bởi hàm số $f\left( t \right)=\dfrac{20t+5}{t+2},t\ge 0$ (nghìn người). Dân số của huyện đó luôn tăng nhưng không vượt quá bao nhiêu nghìn người?Đáp án: 20Lời giải: Ta có $\lim\limits_{t\to +\infty }f\left( t \right)=\lim\limits_{t\to +\infty }\dfrac{20t+5}{t+2}=\lim\limits_{t\to +\infty … [Đọc thêm...] vềGiả sử dân số của một huyện sau $t$ năm kể từ năm 2024 được mô tả bởi hàm số $f\left( t \right)=\dfrac{20t+5}{t+2},t\ge 0$ (nghìn người)

Một nhà máy sản xuất linh kiện điện tử thống kê được rằng trung bình một tổ sản xuất với $x$ người thì số sản phẩm sản xuất được trong một thời gian cố định được tính bẳng công thức $P(x)=\dfrac{5000x}{4x+25}$

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Một nhà máy sản xuất linh kiện điện tử thống kê được rằng trung bình một tổ sản xuất với $x$ người thì số sản phẩm sản xuất được trong một thời gian cố định được tính bẳng công thức $P(x)=\dfrac{5000x}{4x+25}$. Xem $y=P(x)$ là một hàm số xác định trên $\left[ 0;+\infty \right)$, khi đó tiệm cận ngang của đồ thị hàm số làĐáp án: 1250Lời giải: Ta có: $\lim\limits_{x\to +\infty … [Đọc thêm...] vềMột nhà máy sản xuất linh kiện điện tử thống kê được rằng trung bình một tổ sản xuất với $x$ người thì số sản phẩm sản xuất được trong một thời gian cố định được tính bẳng công thức $P(x)=\dfrac{5000x}{4x+25}$

Cho đồ thị hàm số $y=f(x)=\dfrac{6 x^2 – 40 x + 19}{x – 6}$ có tâm đối xứng là $I(a;b)$

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Cho đồ thị hàm số $y=f(x)=\dfrac{6 x^2 - 40 x + 19}{x - 6}$ có tâm đối xứng là $I(a;b)$. Tính $T=- 4 a - 8 b$.Đáp án: -280Lời giải: Ta có $\displaystyle\lim\limits_{x\to 6^+}f(x)=\displaystyle\lim\limits_{x\to 6^+}\dfrac{6 x^2 - 40 x + 19}{x - 6}=-\infty$. Suy ra đồ thị có đường tiệm cận đứng là $x=6$.Ta có $\displaystyle\lim\limits_{x\to +\infty}\left(f(x)-(6 x - … [Đọc thêm...] vềCho đồ thị hàm số $y=f(x)=\dfrac{6 x^2 – 40 x + 19}{x – 6}$ có tâm đối xứng là $I(a;b)$

Một chiếc xe ô tô mới mua có giá $30000$ US

D

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Một chiếc xe ô tô mới mua có giá $30000$ USD. Sau thời gian $t$ (năm), người ta xác định giá trị của xe ô tô đó là $f\left( t \right)=\dfrac{30000+2000t}{t}$ (USD).Sau $15$ năm, giá trị của xe ô tô đó bằng bao nhiêu (USD)?Đáp án: 4000Lời giải: Ta có: $f\left( t \right)=\dfrac{30000+2000t}{t}$.Sau $15$ năm thì $t=15$. Nên $f\left( 15 \right)=\dfrac{30000+2000\times … [Đọc thêm...] vềMột chiếc xe ô tô mới mua có giá $30000$ US

D

Chi phí (đơn vị: nghìn đồng) để sản xuất $x$ sản phẩm của một công ty được xác định bởi hàm số $F(x) = 50263 + 254x$

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Chi phí (đơn vị: nghìn đồng) để sản xuất $x$ sản phẩm của một công ty được xác định bởi hàm số $F(x) = 50263 + 254x$. Gọi $\overline{F}(x)$ là hàm số biểu thị chi phí trung bình (đơn vị: nghìn đồng) để sản xuất $x$ sản phẩm ($x \geq 0$), khi đó, hãy tính chi phí trung bình tối đa để sản xuất một sản phẩm.Đáp án: 254Lời giải: Ta có $\overline{F}(x) = \dfrac{F(x)}{x} = … [Đọc thêm...] vềChi phí (đơn vị: nghìn đồng) để sản xuất $x$ sản phẩm của một công ty được xác định bởi hàm số $F(x) = 50263 + 254x$

Một tác giả muốn xuất bản một cuốn sách Toán học

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Một tác giả muốn xuất bản một cuốn sách Toán học. Biết phí xuất bản là 7 triệu đồng và giá tiền in mỗi cuốn sách là 50 000 đồng. Gọi $t\ \left( t\ge 1 \right)$ là số cuốn sách sẽ in và $f\left( t \right)$ (Đơn vị nghìn đồng) là chi phí trung bình của mỗi cuốn sách. Khi đó, phương trình đường tiệm cận ngang của đồ thị hàm số $f\left( t \right)$ là:Đáp án: 50Lời giải: Tổng số … [Đọc thêm...] vềMột tác giả muốn xuất bản một cuốn sách Toán học

Cho hàm số $y=\dfrac{{{x}^{2}}-1}{x+3}$ có đồ thị $\left( C \right)$. Xét tính đúng sai của các mệnh đề sau

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:TIEM CAN - Dung - sai

Bài toán gốc Cho hàm số $y=\dfrac{{{x}^{2}}-1}{x+3}$ có đồ thị $\left( C \right)$. Xét tính đúng sai của các mệnh đề saua) Đồ thị $\left( C \right)$ có đường tiệm cận đứng $x=-3$.b) Đồ thị $\left( C \right)$ có đường tiệm cận ngang $y=1$.c) Đồ thị $\left( C \right)$ có đường tiệm cận xiên $y=x-3$.d) Khoảng cách từ gốc tọa độ đến đường tiệm cận xiên của đồ thị $\left( C … [Đọc thêm...] vềCho hàm số $y=\dfrac{{{x}^{2}}-1}{x+3}$ có đồ thị $\left( C \right)$. Xét tính đúng sai của các mệnh đề sau

Cho hàm số $y=\dfrac{2{{x}^{2}}+3x+m}{x-m}$. Xét tính đúng sai của các mệnh đề sau:

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:TIEM CAN - Dung - sai

Bài toán gốc Cho hàm số $y=\dfrac{2{{x}^{2}}+3x+m}{x-m}$. Xét tính đúng sai của các mệnh đề sau:a) Khi $m=0$ đồ thị hàm số có một tiệm cận đứng.b) Khi $m=0$ đồ thị hàm số không có tiệm cận.c) Khi $m=1$ đồ thị hàm số có tiệm cận xiên là đường thẳng $y=2x+3$.d) Chỉ có hai giá trị của $m$ mà với giá trị đó của $m$ đồ thị hàm số không có tiệm cận đứng.Lời giải:(Sai) Khi … [Đọc thêm...] vềCho hàm số $y=\dfrac{2{{x}^{2}}+3x+m}{x-m}$. Xét tính đúng sai của các mệnh đề sau:

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 4
  • Trang 5
  • Trang 6
  • Trang 7
  • Trang 8
  • Interim pages omitted …
  • Trang 23
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.