• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Tiệm cận

Cho hàm số \(y = \frac{{x + 2}}{{x – 2}}\) có đồ thị \(\left( C \right)\). Gọi \(I\) là giao điểm hai đường tiệm cận của \(\left( C \right)\). Tiếp tuyến của \(\left( C \right)\) cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\). Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác \(IAB\) bằng

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Câu hỏi: Cho hàm số \(y = \frac{{x + 2}}{{x - 2}}\) có đồ thị \(\left( C \right)\). Gọi \(I\) là giao điểm hai đường tiệm cận của \(\left( C \right)\). Tiếp tuyến của \(\left( C \right)\) cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\). Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác \(IAB\) bằng A. \(4\sqrt 2 \pi \). B. \(8\pi … [Đọc thêm...] vềCho hàm số \(y = \frac{{x + 2}}{{x – 2}}\) có đồ thị \(\left( C \right)\). Gọi \(I\) là giao điểm hai đường tiệm cận của \(\left( C \right)\). Tiếp tuyến của \(\left( C \right)\) cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\). Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác \(IAB\) bằng

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Đồ thị hàm số đã cho có bao nhiêu đường tiệm cận.

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Câu hỏi: Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Đồ thị hàm số đã cho có bao nhiêu đường tiệm cận. A. \(4\). B. \(2\). C. \(1\). D. \(3\). LỜI GIẢI CHI TIẾT Từ đồ thị hàm số ta thấy: Đồ thị hàm số có hai tiệm cận ngang là \(y = \pm 1\), hai tiệm cận đứng là \(x = \pm 2\). Vậy đồ thị hàm số có 4 đường tiệm cận. ======= Thuộc … [Đọc thêm...] vềCho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Đồ thị hàm số đã cho có bao nhiêu đường tiệm cận.

Tìm số đường tiệm cận của đồ thị hàm số \(y = \frac{x}{{\sqrt {{x^2} + 1} – x}}\)

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận nhận biết

Câu hỏi: Tìm số đường tiệm cận của đồ thị hàm số \(y = \frac{x}{{\sqrt {{x^2} + 1} - x}}\) A. 0. B. 1. C. 2. D. 3. LỜI GIẢI CHI TIẾT Tập xác định \(D = \left( { - \infty ; + \infty } \right)\) Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{x}{{\left( {\sqrt {{x^2} + 1} - x} \right)}} = \mathop {\lim }\limits_{x \to + \infty } x\left( {\sqrt … [Đọc thêm...] vềTìm số đường tiệm cận của đồ thị hàm số \(y = \frac{x}{{\sqrt {{x^2} + 1} – x}}\)

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau

Tổng số đường tiệm cận ngang và đường tiệm cận đứng của đồ thị hàm số đã cho là

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Câu hỏi: Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau Tổng số đường tiệm cận ngang và đường tiệm cận đứng của đồ thị hàm số đã cho là A. \(4\) B. \(1\) C. \(3\) D. \(2\) LỜI GIẢI CHI TIẾT Từ bảng biến thiên ta có: \(\mathop {\lim }\limits_{x \to {1^ - }} y = + \infty \) nên đường thẳng \(x = 1\) là đường tiệm cận đứng của đồ thị … [Đọc thêm...] vềCho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau

Tổng số đường tiệm cận ngang và đường tiệm cận đứng của đồ thị hàm số đã cho là

Tìm biểu thức liên hệ giữa \(m\)và \(n\) để đồ thị hàm số \(y = nx + \sqrt {m{x^2} – 12x + 3} \) có đường tiệm cận ngang.

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Câu hỏi: Tìm biểu thức liên hệ giữa \(m\)và \(n\) để đồ thị hàm số \(y = nx + \sqrt {m{x^2} - 12x + 3} \) có đường tiệm cận ngang. A. \(\left\{ \begin{array}{l}m > 0\\n = - \sqrt m \end{array} \right.\) B. \(n = \sqrt m .\) C. \(n = m\). D. \(\left\{ \begin{array}{l}m > 0\\n = \sqrt m \end{array} \right.\). LỜI GIẢI CHI TIẾT Đồ thị hàm số \(y = nx + … [Đọc thêm...] vềTìm biểu thức liên hệ giữa \(m\)và \(n\) để đồ thị hàm số \(y = nx + \sqrt {m{x^2} – 12x + 3} \) có đường tiệm cận ngang.

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\), \(\left( {a \ne 0} \right)\) có đồ thị như hình dưới đây.

Hỏi đồ thị hàm số \(g\left( x \right) = \frac{{\sqrt[{}]{{f\left( x \right)}}}}{{{{\left( {x + 1} \right)}^2}\left( {{x^2} – 4x + 3} \right)}}\) có bao nhiêu đường tiệm cận đứng?

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Câu hỏi: Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\), \(\left( {a \ne 0} \right)\) có đồ thị như hình dưới đây. Hỏi đồ thị hàm số \(g\left( x \right) = \frac{{\sqrt[{}]{{f\left( x \right)}}}}{{{{\left( {x + 1} \right)}^2}\left( {{x^2} - 4x + 3} \right)}}\) có bao nhiêu đường tiệm cận đứng? A. \(2\). B. \(1\). C. \(3\). D. \(4\). LỜI GIẢI CHI TIẾT Điều … [Đọc thêm...] vềCho hàm số \(y = a{x^3} + b{x^2} + cx + d\), \(\left( {a \ne 0} \right)\) có đồ thị như hình dưới đây.

Hỏi đồ thị hàm số \(g\left( x \right) = \frac{{\sqrt[{}]{{f\left( x \right)}}}}{{{{\left( {x + 1} \right)}^2}\left( {{x^2} – 4x + 3} \right)}}\) có bao nhiêu đường tiệm cận đứng?

Có tất cả bao nhiêu giá trị thực của \(m\) để đồ thị hàm số \(y = \frac{{x + 2}}{{m{x^2} – 6x + 7}}\) có đúng hai đường tiệm cận?

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Câu hỏi: Có tất cả bao nhiêu giá trị thực của \(m\) để đồ thị hàm số \(y = \frac{{x + 2}}{{m{x^2} - 6x + 7}}\) có đúng hai đường tiệm cận? A. \(3\). B. \(2\). C. \(1\). D. Vô số. LỜI GIẢI CHI TIẾT TH1: \(m = 0\) \( \Rightarrow \) Đồ thị hàm số có hai đường tiệm cận là \(x = \frac{7}{6}\) và \(y = - \frac{1}{6}\). \( \Rightarrow m = 0\) thỏa … [Đọc thêm...] vềCó tất cả bao nhiêu giá trị thực của \(m\) để đồ thị hàm số \(y = \frac{{x + 2}}{{m{x^2} – 6x + 7}}\) có đúng hai đường tiệm cận?

Số đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {4 – {x^2}} }}{{{x^2} – 3x – 4}}\) là:

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận nhận biết

Câu hỏi: Số đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {4 - {x^2}} }}{{{x^2} - 3x - 4}}\) là: A. \(1\). B. \(2\). C. \(0\). D. \(3\). LỜI GIẢI CHI TIẾT . Điều kiện: \(\left\{ \begin{array}{l}4 - {x^2} \ge 0\\{x^2} - 3x - 4 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2 \le x \le 2\\x \ne - 1\\x \ne 4\end{array} \right. … [Đọc thêm...] vềSố đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {4 – {x^2}} }}{{{x^2} – 3x – 4}}\) là:

Cho hàm số \(y = \frac{{\sqrt {x + 3} – 2}}{{{x^2} – 3x + 2}}\). Đồ thị hàm số có bao nhiêu đường tiệm cận.

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận nhận biết

Câu hỏi: Cho hàm số \(y = \frac{{\sqrt {x + 3} - 2}}{{{x^2} - 3x + 2}}\). Đồ thị hàm số có bao nhiêu đường tiệm cận. A. \(3\) B. \(1\) C. \(4\) D. \(2\) LỜI GIẢI CHI TIẾT Ta có: \(\frac{{\sqrt {x + 3} - 2}}{{{x^2} - 3x + 2}} = \frac{{x - 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {\sqrt {x + 3} + 2} \right)}} = \frac{1}{{\left( {x - 2} … [Đọc thêm...] vềCho hàm số \(y = \frac{{\sqrt {x + 3} – 2}}{{{x^2} – 3x + 2}}\). Đồ thị hàm số có bao nhiêu đường tiệm cận.

Có bao nhiêu giá trị thực của m để đồ thị hàm số \(y = \frac{{2x – 1}}{{\left( {x + 1} \right)\left( {x – m} \right)}}\)có đúng một tiệm cận đứng?

Ngày 02/10/2021 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Trắc nghiệm tiệm cận vận dụng

Câu hỏi: Có bao nhiêu giá trị thực của m để đồ thị hàm số \(y = \frac{{2x - 1}}{{\left( {x + 1} \right)\left( {x - m} \right)}}\)có đúng một tiệm cận đứng? A. 1. B. 2. C. 3. D. 4. LỜI GIẢI CHI TIẾT Đặt \(f\left( x \right) = \left( {x + 1} \right)\left( {x - m} \right)\). Để đồ thị hàm số có đúng một tiệm cận đứng khi và chỉ khi phương trình \(f\left( x … [Đọc thêm...] vềCó bao nhiêu giá trị thực của m để đồ thị hàm số \(y = \frac{{2x – 1}}{{\left( {x + 1} \right)\left( {x – m} \right)}}\)có đúng một tiệm cận đứng?

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Interim pages omitted …
  • Trang 13
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.