Bài toán gốc Trong không gian $Oxyz$, cho $M\left(-2;7;7\right)$. Tìm tọa độ điểm $M'$ đối xứng với $M$ qua mặt phẳng $(Oxy)$ A. $M'\left(-2;7;0\right)$ B. $M'\left(2;-7;0\right)$ C. $M'\left(2;-7;7\right)$ D. $M'\left(-2;7;-7\right)$ Phân tích và Phương pháp giải Đây là dạng toán cơ bản về phép đối xứng (phép phản xạ) của một điểm qua các mặt … [Đọc thêm...] vềTrong không gian $Oxyz$, cho $M\left(-2;7;7\right)$. Tìm tọa độ điểm $M’$ đối xứng với $M$ qua mặt phẳng $(Oxy)$
Toa do oxyz
Trong không gian $Oxyz$. Xét tính đúng sai của các khẳng định sau? a) Điểm $M\left(0;0;5\right)$ thuộc trục $Oz$.
Bài toán gốc Trong không gian $Oxyz$. Xét tính đúng sai của các khẳng định sau? a) Điểm $M\left(0;0;5\right)$ thuộc trục $Oz$. b) Điểm $N\left(-3;1;0\right)$ thuộc mặt phẳng $(Oxy)$. c) Hình chiếu vuông góc của $P\left(4;5;-5\right)$ lên trục $Ox$ là $P^{\prime}\left(4;0;0\right)$. d) Hình chiếu vuông góc của $Q\left(-1;-5;1\right)$ lên mặt phẳng $(Oyz)$ là … [Đọc thêm...] vềTrong không gian $Oxyz$. Xét tính đúng sai của các khẳng định sau? a) Điểm $M\left(0;0;5\right)$ thuộc trục $Oz$.
Trong không gian $Oxyz$, cho $A\left(2;5;-5\right),B\left(-1;4;-3\right),C\left(11;-21;11\right)$. Tìm tọa độ điểm $G$ là trọng tâm của $\Delta ABC$
Bài toán gốc Trong không gian $Oxyz$, cho $A\left(2;5;-5\right),B\left(-1;4;-3\right),C\left(11;-21;11\right)$. Tìm tọa độ điểm $G$ là trọng tâm của $\Delta ABC$ A. $G\left(13;-16;6\right)$ B. $G\left(1;9;-8\right)$ C. $G\left(4;-4;1\right)$ D. $G\left(10;-17;8\right)$ Phân tích và Phương pháp giải Đây là dạng toán cơ bản về tọa độ trong không … [Đọc thêm...] vềTrong không gian $Oxyz$, cho $A\left(2;5;-5\right),B\left(-1;4;-3\right),C\left(11;-21;11\right)$. Tìm tọa độ điểm $G$ là trọng tâm của $\Delta ABC$
Trong không gian $Oxyz$, cho $A\left(4;7;3\right),B\left(1;3;-2\right), C\left(-11;m;n\right)$. Tính $m+n$ biết $A, B, C$ thẳng hàng
Bài toán gốc Trong không gian $Oxyz$, cho $A\left(4;7;3\right),B\left(1;3;-2\right), C\left(-11;m;n\right)$. Tính $m+n$ biết $A, B, C$ thẳng hàng A. $-35$ B. $-38$ C. $-33$ D. $-32$ Phân tích và Phương pháp giải Đây là dạng toán xác định tọa độ của một điểm chưa biết trong không gian Oxyz dựa trên điều kiện ba điểm thẳng hàng. Phương pháp giải … [Đọc thêm...] vềTrong không gian $Oxyz$, cho $A\left(4;7;3\right),B\left(1;3;-2\right), C\left(-11;m;n\right)$. Tính $m+n$ biết $A, B, C$ thẳng hàng
Trong không gian với một hệ trục tọa độ $Oxyz$. Cho $\vec a=(-4;8;1)$ và $\vec b=(5;3;-2)$.
Bài toán gốc Trong không gian với một hệ trục tọa độ $Oxyz$. Cho $\vec a=(-4;8;1)$ và $\vec b=(5;3;-2)$. A. $\vec a+\vec b=(1;11;-1)$. B. $\vec a+\vec b=(1;11;1)$. C. $\vec a+\vec b=(3;11;-1)$. D. $\vec a+\vec b=(1;12;-1)$. 💡 Lời giải: $\vec a+\vec b=(a_1+b_1;a_2+b_2;a_3+b_3)=(1;11;-1)$. Phân tích và Phương pháp giải Dạng bài toán: Phép toán … [Đọc thêm...] vềTrong không gian với một hệ trục tọa độ $Oxyz$. Cho $\vec a=(-4;8;1)$ và $\vec b=(5;3;-2)$.
Trong không gian $Oxyz$, cho hình hộp chữ nhật $ABCD.MNPQ$ có $DA=8,DC=7,DQ=2$.
Bài toán gốc Trong không gian $Oxyz$, cho hình hộp chữ nhật $ABCD.MNPQ$ có $DA=8,DC=7,DQ=2$. $O$ trùng với $D$; các vector $\overrightarrow{DA},\overrightarrow{DC},\overrightarrow{DQ}$ cùng hướng với $\vec{i}, \vec{j}, \vec{k}$. a) $\overrightarrow{DC}=7\vec{j}$. b) $\overrightarrow{DB}=8\vec{i}+7\vec{j}$. c) $\overrightarrow{AN}=7\vec{j}+2\vec{k}$. d) … [Đọc thêm...] vềTrong không gian $Oxyz$, cho hình hộp chữ nhật $ABCD.MNPQ$ có $DA=8,DC=7,DQ=2$.
Trong không gian $Oxyz$, cho $\Delta ABC$ có $A\left(-2;2;-4\right), B\left(-4;1;-1\right)$ và $C(a;b;c)$
Bài toán gốc Trong không gian $Oxyz$, cho $\Delta ABC$ có $A\left(-2;2;-4\right), B\left(-4;1;-1\right)$ và $C(a;b;c)$ thuộc $Oz$ sao cho $\Delta ABC$ vuông tại $A$. Tính $c$. A. $-\dfrac{7}{3}$ B. $-\dfrac{8}{3}$ C. $-\dfrac{10}{3}$ D. $-3$ Phân tích và Phương pháp giải Đây là dạng toán tìm tọa độ điểm (hoặc tham số tọa độ) của đỉnh tam giác … [Đọc thêm...] vềTrong không gian $Oxyz$, cho $\Delta ABC$ có $A\left(-2;2;-4\right), B\left(-4;1;-1\right)$ và $C(a;b;c)$
Trong không gian $Oxyz$, cho $\vec{a}=\left(6;-3;-2\right), \vec{b}=\left(-4;-4;-5\right), \vec{c}=\left(1;-2;-2\right)$.
Bài toán gốc Trong không gian $Oxyz$, cho $\vec{a}=\left(6;-3;-2\right), \vec{b}=\left(-4;-4;-5\right), \vec{c}=\left(1;-2;-2\right)$. Biết $\vec{x}=(x_1;y_1;z_1)$ thỏa mãn $\vec x.\vec a=-21$, $\vec x.\vec b=3$, $\vec x.\vec c=-6$. Tính $x_1+y_1z_1$. A. $-14$ B. $-18$ C. $-19$ D. $-17$ 💡 Lời giải: $\vec{x}=\left(-2;5;-3\right)$ Phân tích và Phương … [Đọc thêm...] vềTrong không gian $Oxyz$, cho $\vec{a}=\left(6;-3;-2\right), \vec{b}=\left(-4;-4;-5\right), \vec{c}=\left(1;-2;-2\right)$.
Trong không gian $Oxyz$, cho $A\left(-2;3;1\right), B\left(6;-3;-1\right), C\left(-3;-2;5\right)$ và điểm $M$ bất kỳ
Bài toán gốc Trong không gian $Oxyz$, cho $A\left(-2;3;1\right), B\left(6;-3;-1\right), C\left(-3;-2;5\right)$ và điểm $M$ bất kỳ. Tìm giá trị nhỏ nhất của $P=2{\overrightarrow{MA}}^{2}-4{\overrightarrow{MB}}^{2}+3{\overrightarrow{MC}}^{2}$. A. $-1999$ B. $-1993$ C. $-1997$ D. $-1996$ 💡 Lời giải: Tìm điểm $I$ thỏa mãn … [Đọc thêm...] vềTrong không gian $Oxyz$, cho $A\left(-2;3;1\right), B\left(6;-3;-1\right), C\left(-3;-2;5\right)$ và điểm $M$ bất kỳ
Trong không gian $Oxyz$, cho $M\left(1;-2;-1\right)$. Tìm tọa độ điểm $M’$ trên trục $Ox$ sao cho $MM’$ ngắn nhất
Bài toán gốc Trong không gian $Oxyz$, cho $M\left(1;-2;-1\right)$. Tìm tọa độ điểm $M'$ trên trục $Ox$ sao cho $MM'$ ngắn nhất A. $M'\left(0;-2;-1\right)$ B. $M'\left(1;0;0\right)$ C. $M'\left(1;2;1\right)$ D. $M'\left(-1;-2;-1\right)$ Phân tích và Phương pháp giải Đây là dạng toán tìm hình chiếu vuông góc của một điểm lên một trục tọa độ (hoặc … [Đọc thêm...] vềTrong không gian $Oxyz$, cho $M\left(1;-2;-1\right)$. Tìm tọa độ điểm $M’$ trên trục $Ox$ sao cho $MM’$ ngắn nhất
