Cho hình lăng trụ đứng tứ giác \(ABCD.A'B'C'D'\) có \(ABCD\) là hình thang cân, \(AD = DC = CB = a,\,AB = 2a\) và \(AA' = 2a\sqrt 2 \). Tính thể tích khối cầu ngoại tiếp hình lăng trụ \(ABCD.A'B'C'D'\) A. \(4{a^3}\pi \). B. \(12\sqrt 3 {a^3}\pi \). C. \(4\sqrt 3 {a^3}\pi \). D. \(3\sqrt 3 {a^3}\pi \). Lời giải: Theo giả thiết thì hình thang \(ABCD\) có đáy … [Đọc thêm...] vềCho hình lăng trụ đứng tứ giác \(ABCD.A’B’C’D’\) có \(ABCD\) là hình thang cân, \(AD = DC = CB = a,\,AB = 2a\) và \(AA’ = 2a\sqrt 2 \). Tính thể tích khối cầu ngoại tiếp hình lăng trụ \(ABCD.A’B’C’D’\)
The tich hinh chop hinh lang tru
Cho hình lăng trụ đứng tam giác \(ABC.A’B’C’\) có tam giác \(\Delta ABC\) cân tại \(A\), \(\widehat {BAC} = {120^0}\), \(AB = a\) và \(AA’ = 2a\sqrt 2 \). Tính thể tích khối cầu ngoại tiếp hình lăng trụ \(ABC.A’B’C’\)
Cho hình lăng trụ đứng tam giác \(ABC.A'B'C'\) có tam giác \(\Delta ABC\) cân tại \(A\), \(\widehat {BAC} = {120^0}\), \(AB = a\) và \(AA' = 2a\sqrt 2 \). Tính thể tích khối cầu ngoại tiếp hình lăng trụ \(ABC.A'B'C'\) A. \(4{a^3}\pi \). B. \(12\sqrt 3 {a^3}\pi \). C. \(4\sqrt 3 {a^3}\pi \). D. \(\frac{4}{3}{a^3}\pi \). Lời giải: Gọi \(M\) là điểm đối xứng … [Đọc thêm...] vềCho hình lăng trụ đứng tam giác \(ABC.A’B’C’\) có tam giác \(\Delta ABC\) cân tại \(A\), \(\widehat {BAC} = {120^0}\), \(AB = a\) và \(AA’ = 2a\sqrt 2 \). Tính thể tích khối cầu ngoại tiếp hình lăng trụ \(ABC.A’B’C’\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi \(AB = 2a;\widehat {ABC} = 60^\circ \). Mặt bên \(SAB\) là tam giác đều và nằm trên mặt phẳng vuông góc với đáy. Gọi \(M,N,P,Q\) lần lượt là trung điểm của \(AB,BC,CD,DA\). Thể tích khối cầu ngoại tiếp hình chóp \(S.MNPQ\)bằng
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi \(AB = 2a;\widehat {ABC} = 60^\circ \). Mặt bên \(SAB\) là tam giác đều và nằm trên mặt phẳng vuông góc với đáy. Gọi \(M,N,P,Q\) lần lượt là trung điểm của \(AB,BC,CD,DA\). Thể tích khối cầu ngoại tiếp hình chóp \(S.MNPQ\)bằng A. \(\frac{{7\pi {a^3}\sqrt 7 }}{{12}}\). B. \(\frac{{\pi {a^3}\sqrt 7 }}{6}\). C. … [Đọc thêm...] vềCho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi \(AB = 2a;\widehat {ABC} = 60^\circ \). Mặt bên \(SAB\) là tam giác đều và nằm trên mặt phẳng vuông góc với đáy. Gọi \(M,N,P,Q\) lần lượt là trung điểm của \(AB,BC,CD,DA\). Thể tích khối cầu ngoại tiếp hình chóp \(S.MNPQ\)bằng
Cho hình chóp \(S.ABC\)có đáy là tam giác cân tại \(A,AB = AC = a,\widehat {BAC} = 120^\circ \), \(SA\)vuông góc với mặt phẳng đáy, góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng đáy bằng \(60^\circ \). Thể tích khối cầu ngoại tiếp hình chóp \(S.ABC\) bằng
Cho hình chóp \(S.ABC\)có đáy là tam giác cân tại \(A,AB = AC = a,\widehat {BAC} = 120^\circ \), \(SA\)vuông góc với mặt phẳng đáy, góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng đáy bằng \(60^\circ \). Thể tích khối cầu ngoại tiếp hình chóp \(S.ABC\) bằng A. \(\frac{{19\pi {a^3}\sqrt {19} }}{{48}}\). B. \(\frac{{19\pi {a^3}\sqrt {19} }}{{24}}\). C. … [Đọc thêm...] vềCho hình chóp \(S.ABC\)có đáy là tam giác cân tại \(A,AB = AC = a,\widehat {BAC} = 120^\circ \), \(SA\)vuông góc với mặt phẳng đáy, góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng đáy bằng \(60^\circ \). Thể tích khối cầu ngoại tiếp hình chóp \(S.ABC\) bằng
Cho khối lăng trụ \(ABC.A’B’C’\) có đáy là tam giác đều cạnh \(2\). Hình chiếu vuông góc của \(B’\) trên mặt phẳng đáy trùng trung điểm \(H\) của cạnh \(AB\), biết góc giữa \(B’H\) và mặt phẳng \(\left( {BCC’B’} \right)\) bằng \(45^\circ \). Tính thể tích \(V\) của khối lăng trụ đã cho.
Cho khối lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(2\). Hình chiếu vuông góc của \(B'\) trên mặt phẳng đáy trùng trung điểm \(H\) của cạnh \(AB\), biết góc giữa \(B'H\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng \(45^\circ \). Tính thể tích \(V\) của khối lăng trụ đã cho. A. \(V = 3\). B. \(V = \frac{3}{2}\). C. \(V = \frac{{\sqrt 3 }}{2}\). D. \(V = … [Đọc thêm...] vềCho khối lăng trụ \(ABC.A’B’C’\) có đáy là tam giác đều cạnh \(2\). Hình chiếu vuông góc của \(B’\) trên mặt phẳng đáy trùng trung điểm \(H\) của cạnh \(AB\), biết góc giữa \(B’H\) và mặt phẳng \(\left( {BCC’B’} \right)\) bằng \(45^\circ \). Tính thể tích \(V\) của khối lăng trụ đã cho.
Cho khối lăng trụ \(ABC.A’B’C’\) có đáy là tam giác vuông cân tại \(B\) có \(AC = 3\sqrt 2 \). Hình chiếu vuông góc của \(A’\) trên mặt phẳng đáy là điểm \(H\) thuộc cạnh \(AC\) sao cho \(HC = 2HA\), biết góc giữa \(\left( {ABB’A’} \right)\) và mặt phẳng đáy bằng \(60^\circ \). Tính thể tích \(V\) của khối lăng trụ đã cho.
Cho khối lăng trụ \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(B\) có \(AC = 3\sqrt 2 \). Hình chiếu vuông góc của \(A'\) trên mặt phẳng đáy là điểm \(H\) thuộc cạnh \(AC\) sao cho \(HC = 2HA\), biết góc giữa \(\left( {ABB'A'} \right)\) và mặt phẳng đáy bằng \(60^\circ \). Tính thể tích \(V\) của khối lăng trụ đã cho. A. \(V = 9\). B. \(V = \frac{9}{2}\). C. \(V … [Đọc thêm...] vềCho khối lăng trụ \(ABC.A’B’C’\) có đáy là tam giác vuông cân tại \(B\) có \(AC = 3\sqrt 2 \). Hình chiếu vuông góc của \(A’\) trên mặt phẳng đáy là điểm \(H\) thuộc cạnh \(AC\) sao cho \(HC = 2HA\), biết góc giữa \(\left( {ABB’A’} \right)\) và mặt phẳng đáy bằng \(60^\circ \). Tính thể tích \(V\) của khối lăng trụ đã cho.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi, \(AC = 2a\), góc \(\widehat {BAD} = 120^\circ \). Biết \(SA = SB = SC\) và góc giữa mặt phẳng \(\left( {SCD} \right)\) với mặt đáy bằng \(45^\circ \). tính thể tích khối chóp \(S.ABCD\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi, \(AC = 2a\), góc \(\widehat {BAD} = 120^\circ \). Biết \(SA = SB = SC\) và góc giữa mặt phẳng \(\left( {SCD} \right)\) với mặt đáy bằng \(45^\circ \). tính thể tích khối chóp \(S.ABCD\). A. \(V = \frac{{4\sqrt 3 {a^3}}}{3}\). B. \(V = \frac{{4{a^3}}}{3}\). C. \(4\sqrt 3 {a^3}\). D. \(4{a^3}\). Lời … [Đọc thêm...] vềCho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi, \(AC = 2a\), góc \(\widehat {BAD} = 120^\circ \). Biết \(SA = SB = SC\) và góc giữa mặt phẳng \(\left( {SCD} \right)\) với mặt đáy bằng \(45^\circ \). tính thể tích khối chóp \(S.ABCD\).