• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

PTMP VDC

[Mức độ 3] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 16\) và hai điểm \(A\left( {5\,;\, – 3\,;\,3} \right)\), \(B\left( { – 2\,;\,2\,;\, – 2} \right)\). Gọi \(M\) là điểm di động trên mặt cầu \(\left( S \right)\). Gọi \(\left( P \right)\) là mặt phẳng qua hai điểm \(A\), \(B\) sao cho khoảng cách từ điểm \(M\) đến \(\left( P \right)\) là lớn nhất. Hỏi khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \(\left( P \right)\) nằm trong khoảng nào?

Ngày 31/05/2024 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

[Mức độ 3] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 16\) và hai điểm \(A\left( {5\,;\, - 3\,;\,3} \right)\), \(B\left( { - 2\,;\,2\,;\, - 2} \right)\). Gọi \(M\) là điểm di động trên mặt cầu \(\left( S \right)\). Gọi \(\left( P \right)\) là mặt phẳng qua hai điểm \(A\), \(B\) … [Đọc thêm...] về[Mức độ 3] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 16\) và hai điểm \(A\left( {5\,;\, – 3\,;\,3} \right)\), \(B\left( { – 2\,;\,2\,;\, – 2} \right)\). Gọi \(M\) là điểm di động trên mặt cầu \(\left( S \right)\). Gọi \(\left( P \right)\) là mặt phẳng qua hai điểm \(A\), \(B\) sao cho khoảng cách từ điểm \(M\) đến \(\left( P \right)\) là lớn nhất. Hỏi khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \(\left( P \right)\) nằm trong khoảng nào?

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\,\,:\,\,{x^2}\, + \,{y^2} + \,{z^2}\, – \,\,8x\, + 6y\, + \,2z\,\, + 6\, = 0\)và mặt phẳng \(\left( P \right)\,\,:\,x\, – \,2y\, = \,\,0\). Có bao nhiệu điểm \(M\)có tọa độ nguyên nằm trên \(\left( P \right)\)sao cho có ít nhất hai tiếp tuyến của \(\left( S \right)\)qua \(M\)và vuông góc với nhau.

Ngày 31/05/2024 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\,\,:\,\,{x^2}\, + \,{y^2} + \,{z^2}\, - \,\,8x\, + 6y\, + \,2z\,\, + 6\, = 0\)và mặt phẳng \(\left( P \right)\,\,:\,x\, - \,2y\, = \,\,0\). Có bao nhiệu điểm \(M\)có tọa độ nguyên nằm trên \(\left( P \right)\)sao cho có ít nhất hai tiếp tuyến của \(\left( S \right)\)qua \(M\)và vuông góc với nhau. A. … [Đọc thêm...] vềTrong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\,\,:\,\,{x^2}\, + \,{y^2} + \,{z^2}\, – \,\,8x\, + 6y\, + \,2z\,\, + 6\, = 0\)và mặt phẳng \(\left( P \right)\,\,:\,x\, – \,2y\, = \,\,0\). Có bao nhiệu điểm \(M\)có tọa độ nguyên nằm trên \(\left( P \right)\)sao cho có ít nhất hai tiếp tuyến của \(\left( S \right)\)qua \(M\)và vuông góc với nhau.

[Mức độ 3] Trong không gian \(Oxyz\), cho hình lập phương \(ABCD\,.\,A’B’C’D’\) tâm \(I\), có điểm \(C\left( {3\,;\, – 2\,;\, – 1} \right)\) và điểm \(A’\left( { – 1\,;\,2\,;\,3} \right)\). Gọi \(\left( S \right)\) là mặt cầu nội tiếp hình lập phương. Biết tiếp diện của \(\left( S \right)\) tại điểm \(M\) trên đoạn \(IC\) có phương trình \(\left( P \right):ax + by + cz + 6 = 0\). Tính tích \(abc\).

Ngày 31/05/2024 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

[Mức độ 3] Trong không gian \(Oxyz\), cho hình lập phương \(ABCD\,.\,A'B'C'D'\) tâm \(I\), có điểm \(C\left( {3\,;\, - 2\,;\, - 1} \right)\) và điểm \(A'\left( { - 1\,;\,2\,;\,3} \right)\). Gọi \(\left( S \right)\) là mặt cầu nội tiếp hình lập phương. Biết tiếp diện của \(\left( S \right)\) tại điểm \(M\) trên đoạn \(IC\) có phương trình \(\left( P \right):ax + by + cz + 6 = … [Đọc thêm...] về[Mức độ 3] Trong không gian \(Oxyz\), cho hình lập phương \(ABCD\,.\,A’B’C’D’\) tâm \(I\), có điểm \(C\left( {3\,;\, – 2\,;\, – 1} \right)\) và điểm \(A’\left( { – 1\,;\,2\,;\,3} \right)\). Gọi \(\left( S \right)\) là mặt cầu nội tiếp hình lập phương. Biết tiếp diện của \(\left( S \right)\) tại điểm \(M\) trên đoạn \(IC\) có phương trình \(\left( P \right):ax + by + cz + 6 = 0\). Tính tích \(abc\).

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\):\({\left( {x – 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 3} \right)^2} = 27\). Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua hai điểm \(A\left( {0;0; – 4} \right),B\left( {2;0;0} \right)\) và cắt \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) sao cho khối nón đỉnh là tâm của \(\left( S \right)\) và đáy là \(\left( C \right)\) có thể tích lớn nhất. Biết phương trình của \(\left( \alpha \right)\) có dạng \(ax + by – z + c = 0,\,\left( {a,b,c \in \mathbb{R}} \right)\). Giá trị của \(a – b + c\) bằng

Ngày 31/05/2024 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\):\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 27\). Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua hai điểm \(A\left( {0;0; - 4} \right),B\left( {2;0;0} \right)\) và cắt \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) sao cho khối nón đỉnh là tâm của … [Đọc thêm...] về

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\):\({\left( {x – 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 3} \right)^2} = 27\). Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua hai điểm \(A\left( {0;0; – 4} \right),B\left( {2;0;0} \right)\) và cắt \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) sao cho khối nón đỉnh là tâm của \(\left( S \right)\) và đáy là \(\left( C \right)\) có thể tích lớn nhất. Biết phương trình của \(\left( \alpha \right)\) có dạng \(ax + by – z + c = 0,\,\left( {a,b,c \in \mathbb{R}} \right)\). Giá trị của \(a – b + c\) bằng

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):\,{\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z – 2} \right)^2} = 9\) và điểm \(M\left( {1\,;\,3\,;\, – 1} \right)\). Biết rằng các tiếp điểm của các tiếp tuyến kẻ từ \(M\) tới mặt cầu đã cho luôn thuộc một đường tròn \(\left( C \right)\) có tâm \(J\left( {a\,;\,b\,;\,c} \right)\). Tính \(a + b + c\).

Ngày 31/05/2024 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):\,{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 9\) và điểm \(M\left( {1\,;\,3\,;\, - 1} \right)\). Biết rằng các tiếp điểm của các tiếp tuyến kẻ từ \(M\) tới mặt cầu đã cho luôn thuộc một đường tròn \(\left( C \right)\) có tâm \(J\left( {a\,;\,b\,;\,c} \right)\). … [Đọc thêm...] vềTrong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):\,{\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z – 2} \right)^2} = 9\) và điểm \(M\left( {1\,;\,3\,;\, – 1} \right)\). Biết rằng các tiếp điểm của các tiếp tuyến kẻ từ \(M\) tới mặt cầu đã cho luôn thuộc một đường tròn \(\left( C \right)\) có tâm \(J\left( {a\,;\,b\,;\,c} \right)\). Tính \(a + b + c\).

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \((S):{\left( {x – 2} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z + 2} \right)^2} = 9\) và hai điểm \(A(5;2;1),\,\,B(1;1; – 2)\). \(MN\) là dây cung của mặt cầu thỏa mãn \(\overrightarrow {MN} \) cùng hướng với \(\vec u = (0;1;2)\) và \(MN = 2\sqrt 5 \). Tính giá trị lớn nhất của \(\left| {AM – BN} \right|\).

Ngày 31/05/2024 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \((S):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 9\) và hai điểm \(A(5;2;1),\,\,B(1;1; - 2)\). \(MN\) là dây cung của mặt cầu thỏa mãn \(\overrightarrow {MN} \) cùng hướng với \(\vec u = (0;1;2)\) và \(MN = 2\sqrt 5 \). Tính giá trị lớn nhất của \(\left| {AM - BN} \right|\). A. … [Đọc thêm...] vềTrong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \((S):{\left( {x – 2} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z + 2} \right)^2} = 9\) và hai điểm \(A(5;2;1),\,\,B(1;1; – 2)\). \(MN\) là dây cung của mặt cầu thỏa mãn \(\overrightarrow {MN} \) cùng hướng với \(\vec u = (0;1;2)\) và \(MN = 2\sqrt 5 \). Tính giá trị lớn nhất của \(\left| {AM – BN} \right|\).

Trong không gian với hệ trục toạ độ \(Oxyz\), cho mặt cầu \((S):{x^2} + {(y – 2)^2} + {z^2} = 12\) và điểm \(A\left( {a;b;c} \right) \in \left( {Oxy} \right)\), với \(a,b,c\) là những số nguyên. Qua \(A\) ta kẻ hai tiếp tuyến đến \(\left( S \right)\) tại những tiếp điểm \(M\) và \(N\). Hỏi có tất cả bao nhiêu điểm \(A\) để \(\widehat {MAN} = 120^\circ \)?

Ngày 31/05/2024 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian với hệ trục toạ độ \(Oxyz\), cho mặt cầu \((S):{x^2} + {(y - 2)^2} + {z^2} = 12\) và điểm \(A\left( {a;b;c} \right) \in \left( {Oxy} \right)\), với \(a,b,c\) là những số nguyên. Qua \(A\) ta kẻ hai tiếp tuyến đến \(\left( S \right)\) tại những tiếp điểm \(M\) và \(N\). Hỏi có tất cả bao nhiêu điểm \(A\) để \(\widehat {MAN} = 120^\circ \)? A. \(12\). B. … [Đọc thêm...] vềTrong không gian với hệ trục toạ độ \(Oxyz\), cho mặt cầu \((S):{x^2} + {(y – 2)^2} + {z^2} = 12\) và điểm \(A\left( {a;b;c} \right) \in \left( {Oxy} \right)\), với \(a,b,c\) là những số nguyên. Qua \(A\) ta kẻ hai tiếp tuyến đến \(\left( S \right)\) tại những tiếp điểm \(M\) và \(N\). Hỏi có tất cả bao nhiêu điểm \(A\) để \(\widehat {MAN} = 120^\circ \)?

Trong không gian với hệ trục tọa độ \(Oxyz\), cho đường thẳng \(d:\left\{ \begin{array}{l}x = – 2t\\y = – 4 + 3t\\z = 1 – t\end{array} \right.\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 4x + 2y + 2z = 0\). Hai mặt phẳng \(\left( P \right),\,\,\left( Q \right)\) chứa \(d\) và cùng tiếp xúc với \(\left( S \right)\) lần lượt tại \(A,\,B\). Gọi \(I\) tà tâm mặt cầu \(\left( S \right)\). Giá trị \(\tan \widehat {AIB}\) bằng

Ngày 31/05/2024 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian với hệ trục tọa độ \(Oxyz\), cho đường thẳng \(d:\left\{ \begin{array}{l}x = - 2t\\y = - 4 + 3t\\z = 1 - t\end{array} \right.\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y + 2z = 0\). Hai mặt phẳng \(\left( P \right),\,\,\left( Q \right)\) chứa \(d\) và cùng tiếp xúc với \(\left( S \right)\) lần lượt tại \(A,\,B\). Gọi \(I\) tà tâm mặt cầu … [Đọc thêm...] vềTrong không gian với hệ trục tọa độ \(Oxyz\), cho đường thẳng \(d:\left\{ \begin{array}{l}x = – 2t\\y = – 4 + 3t\\z = 1 – t\end{array} \right.\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 4x + 2y + 2z = 0\). Hai mặt phẳng \(\left( P \right),\,\,\left( Q \right)\) chứa \(d\) và cùng tiếp xúc với \(\left( S \right)\) lần lượt tại \(A,\,B\). Gọi \(I\) tà tâm mặt cầu \(\left( S \right)\). Giá trị \(\tan \widehat {AIB}\) bằng

Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {0\;;\;8\;;\;2} \right)\) và mặt cầu (S) có phương trình \(\left( S \right):{\left( {x – 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 7} \right)^2} = 72\)và điểm \(B\left( {9\;;\; – 7\;;\;23} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) qua \(A\) và tiếp xúc với \(\left( S \right)\)sao cho khoảng cách từ \(B\) đến \(\left( P \right)\) lớn nhất. Giả sử \(\overrightarrow n = \left( {1\;;\;m\;;\;n} \right)\) là một véc tơ pháp tuyến của \(\left( P \right)\), hãy tính tích \(m.n\) biết \(m\,,\,n\) là các số nguyên.

Ngày 31/05/2024 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {0\;;\;8\;;\;2} \right)\) và mặt cầu (S) có phương trình \(\left( S \right):{\left( {x - 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 7} \right)^2} = 72\)và điểm \(B\left( {9\;;\; - 7\;;\;23} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) qua \(A\) và tiếp xúc với \(\left( S \right)\)sao cho … [Đọc thêm...] vềTrong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {0\;;\;8\;;\;2} \right)\) và mặt cầu (S) có phương trình \(\left( S \right):{\left( {x – 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 7} \right)^2} = 72\)và điểm \(B\left( {9\;;\; – 7\;;\;23} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) qua \(A\) và tiếp xúc với \(\left( S \right)\)sao cho khoảng cách từ \(B\) đến \(\left( P \right)\) lớn nhất. Giả sử \(\overrightarrow n = \left( {1\;;\;m\;;\;n} \right)\) là một véc tơ pháp tuyến của \(\left( P \right)\), hãy tính tích \(m.n\) biết \(m\,,\,n\) là các số nguyên.

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 2} \right)^2} = 4\) và điểm \(A\left( {2;3;3} \right)\). Qua \(A\) kẻ các tiếp tuyến đến \(\left( S \right)\). Khi đó, tập hợp các tiếp điểm \(M\) là một đường tròn có bán kính bằng bao nhiêu?

Ngày 31/05/2024 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 2} \right)^2} = 4\) và điểm \(A\left( {2;3;3} \right)\). Qua \(A\) kẻ các tiếp tuyến đến \(\left( S \right)\). Khi đó, tập hợp các tiếp điểm \(M\) là một đường tròn có bán kính bằng bao nhiêu? A. \(\frac{{3\sqrt {69} }}{{46}}.\) B. \(\sqrt {23} … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 2} \right)^2} = 4\) và điểm \(A\left( {2;3;3} \right)\). Qua \(A\) kẻ các tiếp tuyến đến \(\left( S \right)\). Khi đó, tập hợp các tiếp điểm \(M\) là một đường tròn có bán kính bằng bao nhiêu?

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.