Trong đợt tổ chức HKPĐ cấp tỉnh lần thứ XIV, ban tổ chức thiết kế một cổng chào bằng phao chứa không khí ở bên trong, có hình dạng như một nửa cái Săm ô tô khi bơm căng (tham khảo hình vẽ). Cổng chào có chiều cao so với mặt sân là \(9m\) (tính cả phần phao chứa không khí), phần chân của cổng chào tiếp xúc với mặt sân theo một đường tròn có đường kính là \(2m\) và bề rộng của … [Đọc thêm...] vềTrong đợt tổ chức HKPĐ cấp tỉnh lần thứ XIV, ban tổ chức thiết kế một cổng chào bằng phao chứa không khí ở bên trong, có hình dạng như một nửa cái Săm ô tô khi bơm căng (tham khảo hình vẽ). Cổng chào có chiều cao so với mặt sân là \(9m\) (tính cả phần phao chứa không khí), phần chân của cổng chào tiếp xúc với mặt sân theo một đường tròn có đường kính là \(2m\) và bề rộng của cổng chào là \(18m\) (tính cả phần phao chứa không khí). Bỏ qua độ dày của lớp vỏ cổng chào, mặt sân coi là bằng phẳng. Tính thể tích không khí chứa bên trong cổng chào.
Kết quả tìm kiếm cho: ty so
Trong đợt tổ chức HKPĐ cấp tỉnh lần thứ XIV, ban tổ chức thiết kế một cổng chào bằng phao chứa không khí ở bên trong, có hình dạng như một nửa cái Săm ô tô khi bơm căng (tham khảo hình vẽ). Cổng chào có chiều cao so với mặt sân là \(9m\) (tính cả phần phao chứa không khí), phần chân của cổng chào tiếp xúc với mặt sân theo một đường tròn có đường kính là \(2m\) và bề rộng của cổng chào là \(18m\) (tính cả phần phao chứa không khí). Bỏ qua độ dày của lớp vỏ cổng chào, mặt sân coi là bằng phẳng. Tính thể tích không khí chứa bên trong cổng chào.
Người ta cắt hai hình cầu có bán kính lần lượt là \(R = 13cm\) và \(r = \sqrt {41} \,cm\) để làm hồ lô đựng rượu như hình vẽ sau.



Biết đường tròn giao của hai hình cầu có bán kính \(r’ = 5cm\) và nút uống rượu là một hình trụ có bán kính đáy bằng \(\sqrt 5 cm\), chiều cao bằng \(4cm\). Giả sử độ dày vỏ hồ lô không đáng kể. Hỏi hồ lô đựng được bao nhiêu lít rượu? (Kết quả làm tròn đến hàng phần chục).
Người ta cắt hai hình cầu có bán kính lần lượt là \(R = 13cm\) và \(r = \sqrt {41} \,cm\) để làm hồ lô đựng rượu như hình vẽ sau. Biết đường tròn giao của hai hình cầu có bán kính \(r' = 5cm\) và nút uống rượu là một hình trụ có bán kính đáy bằng \(\sqrt 5 cm\), chiều cao bằng \(4cm\). Giả sử độ dày vỏ hồ lô không đáng kể. Hỏi hồ lô đựng được bao nhiêu lít rượu? (Kết … [Đọc thêm...] vềNgười ta cắt hai hình cầu có bán kính lần lượt là \(R = 13cm\) và \(r = \sqrt {41} \,cm\) để làm hồ lô đựng rượu như hình vẽ sau.
Biết đường tròn giao của hai hình cầu có bán kính \(r’ = 5cm\) và nút uống rượu là một hình trụ có bán kính đáy bằng \(\sqrt 5 cm\), chiều cao bằng \(4cm\). Giả sử độ dày vỏ hồ lô không đáng kể. Hỏi hồ lô đựng được bao nhiêu lít rượu? (Kết quả làm tròn đến hàng phần chục).
Cho hình vuông \(ABCD\) tâm\(O\), độ dài cạnh là \(4\) cm. Đường cong \(BOC\) là một phần của parabol đỉnh \(O\) chia hình vuông thành hai hình phẳng có diện tích lần lượt là \({S_1}\) và \({S_2}\) (tham khảo hình vẽ).
Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng
Cho hình vuông \(ABCD\) tâm\(O\), độ dài cạnh là \(4\) cm. Đường cong \(BOC\) là một phần của parabol đỉnh \(O\) chia hình vuông thành hai hình phẳng có diện tích lần lượt là \({S_1}\) và \({S_2}\) (tham khảo hình vẽ).
Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng
A. \(\frac{2}{5}\).
B. \(\frac{1}{2}\).
C. \(\frac{1}{3}\).
D. \(\frac{3}{5}\).
Lời … [Đọc thêm...] về Cho hình vuông \(ABCD\) tâm\(O\), độ dài cạnh là \(4\) cm. Đường cong \(BOC\) là một phần của parabol đỉnh \(O\) chia hình vuông thành hai hình phẳng có diện tích lần lượt là \({S_1}\) và \({S_2}\) (tham khảo hình vẽ).
Cho hàm số \(y = {x^3} – 3m{x^2} + 3\left( {{m^2} – 1} \right)x + 2020\). Có tất cả bao nhiêu giá trị nguyên của \(m\) sao cho hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\)?
Cho hàm số \(y = {x^3} - 3m{x^2} + 3\left( {{m^2} - 1} \right)x + 2020\). Có tất cả bao nhiêu giá trị nguyên của \(m\) sao cho hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\)? A. \(2\). B. \(1\). C. 4. D. \(3\). Lời giải: Ta có \(y' = 3{x^2} - 6mx + 3\left( {{m^2} - 1} \right) = 0 \Leftrightarrow … [Đọc thêm...] về Cho hàm số \(y = {x^3} – 3m{x^2} + 3\left( {{m^2} – 1} \right)x + 2020\). Có tất cả bao nhiêu giá trị nguyên của \(m\) sao cho hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\)?
Cho hàm số \(f\left( x \right) = \frac{1}{3}{x^3} – 2{x^2} + mx\) với m là tham số thự
C. Số các giá trị nguyên của \(m \in \left( { – 10;10} \right)\) để hàm số \(g\left( x \right) = f\left( {{x^2}} \right)\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) là
Cho hàm số \(f\left( x \right) = \frac{1}{3}{x^3} - 2{x^2} + mx\) với m là tham số thự C. Số các giá trị nguyên của \(m \in \left( { - 10;10} \right)\) để hàm số \(g\left( x \right) = f\left( {{x^2}} \right)\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) là A. \(5\). B. \(6\). C. \(4\). D. \(7\). Lời … [Đọc thêm...] về Cho hàm số \(f\left( x \right) = \frac{1}{3}{x^3} – 2{x^2} + mx\) với m là tham số thự
C. Số các giá trị nguyên của \(m \in \left( { – 10;10} \right)\) để hàm số \(g\left( x \right) = f\left( {{x^2}} \right)\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) là
Cho hàm số \(f(x) = \frac{{\left( {m + 1} \right)\sqrt { – 2x + 3} – 1}}{{ – \sqrt { – 2x + 3} + \frac{2}{m}}}\) (\(m\) là tham số thực). Tập hợp tất cả các giá trị của \(m\) để hàm số đã cho nghịch biến trên khoảng \(\left( { – \frac{1}{2};\,\,1} \right)\) là \(\left( { – \infty ;\,\,a} \right) \cup \left( {b;\,\,c} \right] \cup \left[ {d;\,\, + \infty } \right)\). Giá trị của biểu thức \(a – b + c – d\) bằng.
Cho hàm số \(f(x) = \frac{{\left( {m + 1} \right)\sqrt { - 2x + 3} - 1}}{{ - \sqrt { - 2x + 3} + \frac{2}{m}}}\) (\(m\) là tham số thực). Tập hợp tất cả các giá trị của \(m\) để hàm số đã cho nghịch biến trên khoảng \(\left( { - \frac{1}{2};\,\,1} \right)\) là \(\left( { - \infty ;\,\,a} \right) \cup \left( {b;\,\,c} \right] \cup \left[ {d;\,\, + \infty } \right)\). … [Đọc thêm...] vềCho hàm số \(f(x) = \frac{{\left( {m + 1} \right)\sqrt { – 2x + 3} – 1}}{{ – \sqrt { – 2x + 3} + \frac{2}{m}}}\) (\(m\) là tham số thực). Tập hợp tất cả các giá trị của \(m\) để hàm số đã cho nghịch biến trên khoảng \(\left( { – \frac{1}{2};\,\,1} \right)\) là \(\left( { – \infty ;\,\,a} \right) \cup \left( {b;\,\,c} \right] \cup \left[ {d;\,\, + \infty } \right)\). Giá trị của biểu thức \(a – b + c – d\) bằng.
Tìm tập các giá trị của \(m\) để hàm số \(y = \frac{{\ln x – m}}{{m\ln x – 4}}\) đồng biến trên khoảng \(\left( {{\rm{e}}; + \infty } \right)\).
Tìm tập các giá trị của \(m\) để hàm số \(y = \frac{{\ln x - m}}{{m\ln x - 4}}\) đồng biến trên khoảng \(\left( {{\rm{e}}; + \infty } \right)\). A. \(\left( { - \infty ; - 2} \right) \cup \left( {2; + \infty } \right)\). B. \(\left( { - \infty ; - 2} \right) \cup \left[ {4; + \infty } \right)\). C. \(\left( { - \infty ; - 2} \right)\). D. … [Đọc thêm...] vềTìm tập các giá trị của \(m\) để hàm số \(y = \frac{{\ln x – m}}{{m\ln x – 4}}\) đồng biến trên khoảng \(\left( {{\rm{e}}; + \infty } \right)\).
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình bên. Có bao nhiêu số nguyên \(m\) để hàm số \(g\left( x \right) = f\left( {{x^3} – 3{x^2} + mx + 8 – m} \right)\) đồng biến trên \(\left( {0; + \infty } \right)\)?

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình bên. Có bao nhiêu số nguyên \(m\) để hàm số \(g\left( x \right) = f\left( {{x^3} - 3{x^2} + mx + 8 - m} \right)\) đồng biến trên \(\left( {0; + \infty } \right)\)? A. \(5\). B. \(6\). C. \(4\). D. \(3\). Lời giải: Ta có \(g'\left( x \right) = \left( … [Đọc thêm...] về Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình bên. Có bao nhiêu số nguyên \(m\) để hàm số \(g\left( x \right) = f\left( {{x^3} – 3{x^2} + mx + 8 – m} \right)\) đồng biến trên \(\left( {0; + \infty } \right)\)?
Gọi \(S\) là tập hợp các giá trị của tham số \(m \in \left( { – \infty ;\frac{{ – 16}}{{27}}} \right)\) sao cho phương trình
\({4.4^{{x^2} + 2x}} + \left( {12m – 12} \right){6^{{x^2} + 2x}} – \left( {54m + 27} \right){3^{2{x^2} + 4x}} = 0\) có hai nghiệm nguyên . Khi đó tổng các phần tử của \(S\) bằng
Gọi \(S\) là tập hợp các giá trị của tham số \(m \in \left( { - \infty ;\frac{{ - 16}}{{27}}} \right)\) sao cho phương trình \({4.4^{{x^2} + 2x}} + \left( {12m - 12} \right){6^{{x^2} + 2x}} - \left( {54m + 27} \right){3^{2{x^2} + 4x}} = 0\) có hai nghiệm nguyên . Khi đó tổng các phần tử của \(S\) bằng A.\(\frac{{ - 115}}{{81}}\) . B. \(\frac{{ - 96}}{{81}}\). C. … [Đọc thêm...] vềGọi \(S\) là tập hợp các giá trị của tham số \(m \in \left( { – \infty ;\frac{{ – 16}}{{27}}} \right)\) sao cho phương trình
\({4.4^{{x^2} + 2x}} + \left( {12m – 12} \right){6^{{x^2} + 2x}} – \left( {54m + 27} \right){3^{2{x^2} + 4x}} = 0\) có hai nghiệm nguyên . Khi đó tổng các phần tử của \(S\) bằng
Có bao nhiêu giá trị nguyên của tham số \(m \in \left( { – 10;10} \right)\)để phương trình \({9^x} – {2.3^x} + 3 – m = 0\) có nghiệm thuộc \(\left( {0; + \infty } \right)\)
Có bao nhiêu giá trị nguyên của tham số \(m \in \left( { - 10;10} \right)\)để phương trình \({9^x} - {2.3^x} + 3 - m = 0\) có nghiệm thuộc \(\left( {0; + \infty } \right)\) A. \(5\). B. \(6\). C. \(8\). D. \(7\). Lời giải: Đặt \(t = {3^x}\).Vì \(x > 0\)nên \(t > 1\). Phương trình trở thành \({t^2} - 2t + 3 - m = 0\). \( \Leftrightarrow m = … [Đọc thêm...] vềCó bao nhiêu giá trị nguyên của tham số \(m \in \left( { – 10;10} \right)\)để phương trình \({9^x} – {2.3^x} + 3 – m = 0\) có nghiệm thuộc \(\left( {0; + \infty } \right)\)