• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Kết quả tìm kiếm cho: ty+so

Cho phương trình \({2^{\left( {x + 2} \right)\left( {2x + 1} \right)}}.\ln \left[ {2\left( {x + 2} \right)x + 3} \right] = {2^{y + {x^2} + x + 1}}.\ln \sqrt {{x^2} + y + 1} \) (1) với \(y \ge 0\). Khi \(2{x^2} – y\) đạt giá trị nhỏ nhất thì giá trị của biểu thức \(S = y – x\) bằng

Ngày 02/06/2024 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:CUC TRI LOGARIT, MAX MIN LOGARIT 2 BIEN

Cho phương trình \({2^{\left( {x + 2} \right)\left( {2x + 1} \right)}}.\ln \left[ {2\left( {x + 2} \right)x + 3} \right] = {2^{y + {x^2} + x + 1}}.\ln \sqrt {{x^2} + y + 1} \) (1) với \(y \ge 0\). Khi \(2{x^2} - y\) đạt giá trị nhỏ nhất thì giá trị của biểu thức \(S = y - x\) bằng A. \(16\). B. \(14\). C. \(10\).\(\) D. \(12\). Lời giải: (1)\( \Leftrightarrow … [Đọc thêm...] vềCho phương trình \({2^{\left( {x + 2} \right)\left( {2x + 1} \right)}}.\ln \left[ {2\left( {x + 2} \right)x + 3} \right] = {2^{y + {x^2} + x + 1}}.\ln \sqrt {{x^2} + y + 1} \) (1) với \(y \ge 0\). Khi \(2{x^2} – y\) đạt giá trị nhỏ nhất thì giá trị của biểu thức \(S = y – x\) bằng

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\,\,:\,\,{x^2}\, + \,{y^2} + \,{z^2}\, – \,\,8x\, + 6y\, + \,2z\,\, + 6\, = 0\)và mặt phẳng \(\left( P \right)\,\,:\,x\, – \,2y\, = \,\,0\). Có bao nhiệu điểm \(M\)có tọa độ nguyên nằm trên \(\left( P \right)\)sao cho có ít nhất hai tiếp tuyến của \(\left( S \right)\)qua \(M\)và vuông góc với nhau.

Ngày 31/05/2024 Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\,\,:\,\,{x^2}\, + \,{y^2} + \,{z^2}\, - \,\,8x\, + 6y\, + \,2z\,\, + 6\, = 0\)và mặt phẳng \(\left( P \right)\,\,:\,x\, - \,2y\, = \,\,0\). Có bao nhiệu điểm \(M\)có tọa độ nguyên nằm trên \(\left( P \right)\)sao cho có ít nhất hai tiếp tuyến của \(\left( S \right)\)qua \(M\)và vuông góc với nhau. A. … [Đọc thêm...] vềTrong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\,\,:\,\,{x^2}\, + \,{y^2} + \,{z^2}\, – \,\,8x\, + 6y\, + \,2z\,\, + 6\, = 0\)và mặt phẳng \(\left( P \right)\,\,:\,x\, – \,2y\, = \,\,0\). Có bao nhiệu điểm \(M\)có tọa độ nguyên nằm trên \(\left( P \right)\)sao cho có ít nhất hai tiếp tuyến của \(\left( S \right)\)qua \(M\)và vuông góc với nhau.

nbsp; Trong không gian cho tam giác đều \(SAB\) và hình chữ nhật \(ABCD\) với\(AD = 2a\) nằm trên hai mặt phẳng vuông góc. Gọi \(\varphi \) là góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\). Biết \(\tan \varphi = \frac{{2\sqrt 2 }}{3}\). Thể tích của khối chóp \(S.ABC\) là

Ngày 30/05/2024 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru, THE TICH LANG TRU VDC

nbsp; Trong không gian cho tam giác đều \(SAB\) và hình chữ nhật \(ABCD\) với\(AD = 2a\) nằm trên hai mặt phẳng vuông góc. Gọi \(\varphi \) là góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\). Biết \(\tan \varphi = \frac{{2\sqrt 2 }}{3}\). Thể tích của khối chóp \(S.ABC\) là A. \(V = {a^3}\sqrt 3 \) B. \(V = \frac{{{a^3}\sqrt 3 }}{2}\) C. … [Đọc thêm...] vềnbsp; Trong không gian cho tam giác đều \(SAB\) và hình chữ nhật \(ABCD\) với\(AD = 2a\) nằm trên hai mặt phẳng vuông góc. Gọi \(\varphi \) là góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\). Biết \(\tan \varphi = \frac{{2\sqrt 2 }}{3}\). Thể tích của khối chóp \(S.ABC\) là

Cho lăng trụ tứ giác \(ABCD.A’B’C’D’\) có đáy là hình vuông và cạnh bên bằng \(2a\). Hình chiếu của \(A’\) lên mặt phẳng \(\left( {ABCD} \right)\)là trung điểm của \(AD\), đường thẳng \(A’C\) tạo với mặt phẳng \(\left( {ABCD} \right)\)một góc là \({45^0}\). Thể tích khối lăng trụ\(ABCD.A’B’C’D’\) bằng

Ngày 30/05/2024 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru, THE TICH LANG TRU VDC

Cho lăng trụ tứ giác \(ABCD.A'B'C'D'\) có đáy là hình vuông và cạnh bên bằng \(2a\). Hình chiếu của \(A'\) lên mặt phẳng \(\left( {ABCD} \right)\)là trung điểm của \(AD\), đường thẳng \(A'C\) tạo với mặt phẳng \(\left( {ABCD} \right)\)một góc là \({45^0}\). Thể tích khối lăng trụ\(ABCD.A'B'C'D'\) bằng A. \(\frac{{16{a^3}}}{3}\). B. \(\frac{{8{a^3}\sqrt {30} … [Đọc thêm...] về

Cho lăng trụ tứ giác \(ABCD.A’B’C’D’\) có đáy là hình vuông và cạnh bên bằng \(2a\). Hình chiếu của \(A’\) lên mặt phẳng \(\left( {ABCD} \right)\)là trung điểm của \(AD\), đường thẳng \(A’C\) tạo với mặt phẳng \(\left( {ABCD} \right)\)một góc là \({45^0}\). Thể tích khối lăng trụ\(ABCD.A’B’C’D’\) bằng

Cho hình lăng trụ \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông tại \(A\), cạnh \(BC = 2a\) và

\(\widehat {ABC} = {60^0}\). Biết tứ giác \(BCC’B’\) là hình thoi có \(\widehat {B’BC}\) là góc nhọn, mặt phẳng \(\left( {BCC’B’} \right)\)vuông góc với \(\left( {ABC} \right)\), góc giữa hai mặt phẳng \(\left( {ABB’A’} \right)\) và \(\left( {ABC} \right)\) bằng \({45^0}\). Thể tích khối lăng trụ \(ABC.A’B’C’\) bằng

Ngày 30/05/2024 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru, THE TICH LANG TRU VDC

Cho hình lăng trụ \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\), cạnh \(BC = 2a\) và \(\widehat {ABC} = {60^0}\). Biết tứ giác \(BCC'B'\) là hình thoi có \(\widehat {B'BC}\) là góc nhọn, mặt phẳng \(\left( {BCC'B'} \right)\)vuông góc với \(\left( {ABC} \right)\), góc giữa hai mặt phẳng \(\left( {ABB'A'} \right)\) và \(\left( {ABC} \right)\) bằng \({45^0}\). Thể … [Đọc thêm...] vềCho hình lăng trụ \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông tại \(A\), cạnh \(BC = 2a\) và

\(\widehat {ABC} = {60^0}\). Biết tứ giác \(BCC’B’\) là hình thoi có \(\widehat {B’BC}\) là góc nhọn, mặt phẳng \(\left( {BCC’B’} \right)\)vuông góc với \(\left( {ABC} \right)\), góc giữa hai mặt phẳng \(\left( {ABB’A’} \right)\) và \(\left( {ABC} \right)\) bằng \({45^0}\). Thể tích khối lăng trụ \(ABC.A’B’C’\) bằng

Giải SÁCH bài tập Toán 11 – CHÂN TRỜI

Ngày 08/03/2024 Thuộc chủ đề:Giải Sách bài tập Toán 11 - Chân trời Tag với:gbt toan 11, GSBT TOAN 11

Giải SÁCH bài tập Toán LỚP 11 - CHÂN TRỜI MỤC LỤC  TẬP 1   TẬP 2 … [Đọc thêm...] vềGiải SÁCH bài tập Toán 11 – CHÂN TRỜI

Giải SÁCH bài tập Toán 11 – KẾT NỐI

Ngày 01/03/2024 Thuộc chủ đề:Giải Sách bài tập Toán 11 - Kết nối Tag với:gbt toan 11, GBT TOAN 11 KNTT, GSBT TOAN 11, GSBT TOAN 11 KN

Giải SÁCH bài tập Toán LỚP 11 - KẾT NỐI TRI THỨC MỤC LỤC TẬP 1   TẬP 2 =========****======== … [Đọc thêm...] vềGiải SÁCH bài tập Toán 11 – KẾT NỐI

Giải SGK Toán 11: Bài tập cuối Chương 6 – KNTT

Ngày 25/02/2024 Thuộc chủ đề:Giải bài tập Toán 11 - Kết nối Tag với:GBT Toan 11 Chuong 6 – KNTT

Giải SGK Toán 11: Bài tập cuối Chương 6 - KNTT ====== Giải Toán 11 trang 25 Tập 2 Bài 6.27 trang 25 Toán 11 Tập 2: Cho hai số thực dương x, y và hai số thực α, β tùy ý. Khẳng định nào sau đây là sai? A. xα ∙ xβ = xα + β. B. xα ∙ yβ = … [Đọc thêm...] vềGiải SGK Toán 11: Bài tập cuối Chương 6 – KNTT

Giải SGK Toán 11 Bài 21: Phương trình, bất phương trình mũ và lôgarit – KNTT

Ngày 25/02/2024 Thuộc chủ đề:Giải bài tập Toán 11 - Kết nối Tag với:GBT Toan 11 Chuong 6 – KNTT

Giải SGK Toán 11 Bài 21 (Kết nối tri thức): Phương trình, bất phương trình mũ và lôgarit ================= Giải bài tập Toán lớp 11 Bài 21: Phương trình, bất phương trình mũ và lôgarit Mở đầu trang 20 Toán 11 Tập 2: Giả sử giá trị còn lại (tính theo triệu đồng) của một chiếc ô tô sau t năm sử dụng được mô hình hóa bằng công thức: V(t) = 780 ∙ (0,905)t. Hỏi nếu theo mô hình này, … [Đọc thêm...] vềGiải SGK Toán 11 Bài 21: Phương trình, bất phương trình mũ và lôgarit – KNTT

Giải SGK Toán 11 Bài 19: Lôgarit – KNTT

Ngày 24/02/2024 Thuộc chủ đề:Giải bài tập Toán 11 - Kết nối Tag với:GBT Toan 11 Chuong 6 – KNTT

Giải SGK Toán 11 Bài 19 (Kết nối tri thức): Lôgarit ================= Giải bài tập Toán lớp 11 Bài 19: Lôgarit Mở đầu trang 10 Toán 11 Tập 2: Bác An gửi tiết kiệm ngân hàng 100 triệu đồng kì hạn 12 tháng, với lãi suất không đổi là 6% một năm. Khi đó sau n năm gửi thì tổng số tiền bác An thu được (cả vốn lẫn lãi) cho bởi công thức sau: A = 100 ∙ (1 + 0,06)n (triệu đồng). Hỏi sau … [Đọc thêm...] vềGiải SGK Toán 11 Bài 19: Lôgarit – KNTT

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 470
  • Trang 471
  • Trang 472
  • Trang 473
  • Trang 474
  • Interim pages omitted …
  • Trang 743
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.