• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Bài tập Hàm số / Đề: Tìm hai điểm $A,B$ nằm trên đồ thị $(C):y=\frac{x^2}{x-1}$ và đối xứng nhau qua đường thẳng $(d):y=x-1$

Đề: Tìm hai điểm $A,B$ nằm trên đồ thị $(C):y=\frac{x^2}{x-1}$ và đối xứng nhau qua đường thẳng $(d):y=x-1$

Đăng ngày: 10/03/2020 Biên tâp: admin Để lại bình luận Thuộc chủ đề:Bài tập Hàm số

ham so
Đề bài: Tìm hai điểm $A,B$ nằm trên đồ thị $(C):y=\frac{x^2}{x-1}$ và đối xứng nhau qua đường thẳng $(d):y=x-1$

Lời giải

Hai điểm $A,B$ đối xứng nhau qua đường thẳng $(d)$.
$\Leftrightarrow AB\bot (d)$ và trung điểm $I$ của $AB$ thuộc $(d)$.
*Vì $AB$ vuông góc với $(d)$ nên $(AB):y=-x+m$.
Hoành độ giao điểm $A,B$ là nghiệm của phương trình:
$\frac{x^{2}}{x-1}=-x+m \Leftrightarrow g(x)=2x^{2}-(m+1)x+m=0 $ (1)
Để $A,B$ tồn tại thì phương trình (1) phải có hai nghiệm phân biệt khi:
$\Delta_{g} >0 \Leftrightarrow (m+1)^{2}-8m>0 \Leftrightarrow m^{2}-6m+1>0$
$\Leftrightarrow m>3+\sqrt{8}$ hoặc $mKhi đó,giả sử $x_{A},x_{B}$ là các nghiệm của (1) thì:
$\begin{cases} x_{A}+x_{B}=\frac{m+1}{2} \\ x_{A}.x_{B}=\frac{m}{2}\end{cases} $
Gọi $I$ là trung điểm của $AB$,ta có:
$I: \begin{cases} x_{I}=\frac{x_{A}+x_{B}}{2}\\y_{I}=-x_{I}+m\end{cases} \Leftrightarrow I: \begin{cases} x_{I}=\frac{m+1}{4}\\ y_{I}=\frac{3m-1}{4}\end{cases} $
*Điểm $I \in (d)$  nên:
$\frac{3m-1}{4}=\frac{m+1}{4}-1 \Leftrightarrow m=-1$
Với $m=-1$ phương trình (1) có dạng:
$2x^{2}-1=0 \Leftrightarrow \begin{cases} x_{A}=\frac{1}{\sqrt{2}} \\x_{B}=-\frac{1}{\sqrt{2}}\end{cases} $
$\Leftrightarrow \begin{cases} A(\frac{1}{\sqrt{2}};-1-\frac{1}{\sqrt{2}})\\ B(-\frac{1}{\sqrt{2}};-1+\frac{1}{\sqrt{2}})\end{cases} $

Tag với:Tâm đối xứng - trục đối xứng

Bài liên quan:

  • Đề: Cho hàm số $y = 2x^3 – (2 + m)x^2 + 1    (1)$ , với $m$ là tham số. Tìm giá trị của $m$ để đồ thị hàm số $(1)$ có $2$ điểm phân biệt đối xứng nhau qua gốc tọa độ.
  • Đề: Cho hàm số  $y = \frac{2x – 1}{x + 1}$. Chứng minh rằng đường thẳng $d: y = – x + 1$ là truc đối xứng của $(C)$.
  • Đề: Xác định $m$ để đồ thị hàm số $(C):y=x^{4}+4mx^{3}-2x^{2}-12mx$ có trục đối xứng song song với $Oy$.
  • Đề: Xem hàm số   $y = \frac{{{x^2} – 3x + 4}}{{2x – 2}}$1)    Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2)    $M$ là một điểm tùy ý thuộc đồ thị.Tiếp tuyến của đồ thị tại $M$ cắt tiệm cận đứng và tiệm cận xiên tại $A$ và $B$. Chứng tỏ rằng $M$ là trung điểm của đoạn $AB$, và tam giác $IAB$, với $I$ là giao điểm của hai tiệm cận, có diện tích không phụ thuộc vào $M$.3)    Tìm trên đồ thị hai điểm đối xứng với nhau qua đường thẳng $y = x$
  • Đề: Cho hàm số $y=\frac{x^{2}-mx+m-1}{x-2}$.Tìm $m$ để đồ thị hàm số nhận điểm $I(2;3)$ làm tâm đối xứng.
  • Đề: Cho hàm số: $y = \frac{x^2 + (m – 2)x + m + 1}{x + 1}\,\,\,$$1.$ Khảo sát và vẽ đồ thị hàm số khi $m = 2.$$2.$ Tìm $m$ để trên đồ thị có hai điểm phân biệt $A, B$ sao cho :$\begin{array}{l}           5{x_A} – {y_A} + 3 = 0;  5{x_B} – {y_B} + 3 = 0\end{array}$Tìm $m$ để hai điểm $A, B$ đó đối xứng với nhau qua đường thẳng $(d)$ có phương trình: $x + 5y + 9 = 0$
  • Đề: Cho hàm số: $y = \frac{x}{1 + x}$$1.$ Khảo sát và vẽ đồ thị hàm số đã cho.$2.$ Gọi $I$ là giao điểm của hai đường tiệm cận. Hãy chứng minh:$a)$ $I$ là tâm đối xứng của đồ thị hàm số.$b)$ Không có bất cứ đường tiếp tuyến nào của đồ thị hàm số đi qua $I.$$3.$ Chứng minh rằng với mọi $a, b$ ta có: $\frac{{|a + b|}}{{1 + |a + b|}} \le \frac{{|a| + |b|}}{{1 +|a| + |b|}}$Hãy chỉ rõ dấu bằng xảy ra khi nào?
  • Đề: Cho hàm số  $y = \frac{2x^2 + (m – 4)x – 2m + 1}{x – 2} (1)$. Tìm $m$ để đồ thị của hàm số $(1)$ nhận điểm $(2; 1)$ làm tâm đối xứng.
  • Đề:  Cho hàm số   $y = \frac{{{x^2} + 2{m^2}x + {m^2}}}{{x + 1}}$1)    Với giá trị nào của $m$ thì hàm số có cực trị?2)    Xác định $m$ để đồ thị của hàm số có 2 điểm đối xứng với nhau qua gốc tọa độ.3)    Khảo sát sự biến thiên và vẽ đồ thị ứng với $m = 2$
  • Đề: Cho hàm số $y=x^{3}-3x^{2}+1$.Chứng minh rằng đồ thị hàm số nhận điểm $I(1;-1)$ làm tâm đối xứng.

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2021) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.