• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Quốc gia Môn Toán
  • Trắc nghiệm toán 12
  • Máy tính

Đề: Xác định $m$ để đồ thị hàm số $(C):y=x^{4}+4mx^{3}-2x^{2}-12mx$ có trục đối xứng song song với $Oy$.

Đăng ngày: 11/03/2020 Biên tập: admin Thuộc chủ đề:Bài tập Hàm số Tag với:Tâm đối xứng - trục đối xứng

ham so
Đề bài: Xác định $m$ để đồ thị hàm số $(C):y=x^{4}+4mx^{3}-2x^{2}-12mx$ có trục đối xứng song song với $Oy$.

Lời giải

Giả sử đồ thị có trục đối xứng song song với $Oy$ là $x=a(a\neq 0)$
Khi đó,với phép biến đổi tọa độ:
$\begin{cases} X=x-a \\Y=y\end{cases} \Leftrightarrow \begin{cases} x=X+a \\y=Y \end{cases} $
Hàm số $Y=(X+a)^{4}+4m(X+a)^{3}-2(X+a)^{2}-12m(X+a)$ là hàm số chẵn.
Ta có:
$Y=(X+a)^{4}+4m(X+a)^{3}-2(X+a)^{2}-12m(X+a)$
$=X^{4}+4a^{2}X^{2}+a^{4}+4aX^{3}+2a^{2}X^{2}+4aX^{3}+4m(X^{3}+3X^{2}a+3Xa^{2}+a^{3})-$
$-2(X^{2}+2Xa+a^{2})-12m(X+a)$
$=X^{4}+4(a+m)X^{3}+2(3a^{2}+6am-1)X^{2}+4(a^{3}+3ma^{2}-a-3m)X$
$+a^{4}+4ma^{3}-2a^{2}-12ma$ (1)
Hàm số (1) là hàm số chẵn
$\Leftrightarrow \begin{cases} 4(a+m)=0 \\4(a^{3}+3ma^{2}-a-3m)=0\end{cases} \Leftrightarrow m=\pm 1$
Vậy với $m=\pm 1$ đồ thị hàm số có trục đối xứng song song với $Oy$.

Thuộc chủ đề:Bài tập Hàm số Tag với:Tâm đối xứng - trục đối xứng

Bài liên quan:

  1. Đề: Cho hàm số $y = 2x^3 – (2 + m)x^2 + 1    (1)$ , với $m$ là tham số. Tìm giá trị của $m$ để đồ thị hàm số $(1)$ có $2$ điểm phân biệt đối xứng nhau qua gốc tọa độ.
  2. Đề: Cho hàm số  $y = \frac{2x – 1}{x + 1}$. Chứng minh rằng đường thẳng $d: y = – x + 1$ là truc đối xứng của $(C)$.
  3. Đề: Xem hàm số   $y = \frac{{{x^2} – 3x + 4}}{{2x – 2}}$1)    Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2)    $M$ là một điểm tùy ý thuộc đồ thị.Tiếp tuyến của đồ thị tại $M$ cắt tiệm cận đứng và tiệm cận xiên tại $A$ và $B$. Chứng tỏ rằng $M$ là trung điểm của đoạn $AB$, và tam giác $IAB$, với $I$ là giao điểm của hai tiệm cận, có diện tích không phụ thuộc vào $M$.3)    Tìm trên đồ thị hai điểm đối xứng với nhau qua đường thẳng $y = x$
  4. Đề: Cho hàm số $y=\frac{x^{2}-mx+m-1}{x-2}$.Tìm $m$ để đồ thị hàm số nhận điểm $I(2;3)$ làm tâm đối xứng.
  5. Đề: Tìm hai điểm $A,B$ nằm trên đồ thị $(C):y=\frac{x^2}{x-1}$ và đối xứng nhau qua đường thẳng $(d):y=x-1$
  6. Đề: Cho hàm số: $y = \frac{x^2 + (m – 2)x + m + 1}{x + 1}\,\,\,$$1.$ Khảo sát và vẽ đồ thị hàm số khi $m = 2.$$2.$ Tìm $m$ để trên đồ thị có hai điểm phân biệt $A, B$ sao cho :$\begin{array}{l}           5{x_A} – {y_A} + 3 = 0;  5{x_B} – {y_B} + 3 = 0\end{array}$Tìm $m$ để hai điểm $A, B$ đó đối xứng với nhau qua đường thẳng $(d)$ có phương trình: $x + 5y + 9 = 0$
  7. Đề: Cho hàm số: $y = \frac{x}{1 + x}$$1.$ Khảo sát và vẽ đồ thị hàm số đã cho.$2.$ Gọi $I$ là giao điểm của hai đường tiệm cận. Hãy chứng minh:$a)$ $I$ là tâm đối xứng của đồ thị hàm số.$b)$ Không có bất cứ đường tiếp tuyến nào của đồ thị hàm số đi qua $I.$$3.$ Chứng minh rằng với mọi $a, b$ ta có: $\frac{{|a + b|}}{{1 + |a + b|}} \le \frac{{|a| + |b|}}{{1 +|a| + |b|}}$Hãy chỉ rõ dấu bằng xảy ra khi nào?
  8. Đề: Cho hàm số  $y = \frac{2x^2 + (m – 4)x – 2m + 1}{x – 2} (1)$. Tìm $m$ để đồ thị của hàm số $(1)$ nhận điểm $(2; 1)$ làm tâm đối xứng.
  9. Đề:  Cho hàm số   $y = \frac{{{x^2} + 2{m^2}x + {m^2}}}{{x + 1}}$1)    Với giá trị nào của $m$ thì hàm số có cực trị?2)    Xác định $m$ để đồ thị của hàm số có 2 điểm đối xứng với nhau qua gốc tọa độ.3)    Khảo sát sự biến thiên và vẽ đồ thị ứng với $m = 2$
  10. Đề: Cho hàm số $y=x^{3}-3x^{2}+1$.Chứng minh rằng đồ thị hàm số nhận điểm $I(1;-1)$ làm tâm đối xứng.
  11. Đề: Cho hàm số $y=f(x)=\frac{ax+b}{cx+d}$,với $c \neq 0,D=ad-bc \neq 0.$ Chứng minh rằng đồ thị hàm số nhận điểm $I(-\frac{d}{c};\frac{a}{c})$ làm tâm đối xứng.

Reader Interactions

Bình luận

  1. Mai Anh viết

    17/10/2020 lúc 5:01 chiều

    khúc phép biến đổi tọa độ em chưa hiều
    có thể giải đáp giúp e đc ko ạ

    Trả lời

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2022) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.