• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Quốc gia Môn Toán
  • Trắc nghiệm toán 12
  • Máy tính

Đề: Cho các hàm số : $f(x) = \frac{x}{{1 + \left| x \right|}},g(x) = \frac{x}{{1 – \left| x \right|}}$$    a)$ Tìm miền xác định và miền giá trị của $f(x) $ và $g(x).$$  b)$ Tìm $g_0f$ và $f_0g.$

Đăng ngày: 10/03/2020 Biên tập: admin Thuộc chủ đề:Bài tập Hàm số Tag với:Tính chất của hàm số

ham so
Đề bài: Cho các hàm số : $f(x) = \frac{x}{{1 + \left| x \right|}},g(x) = \frac{x}{{1 – \left| x \right|}}$$    a)$ Tìm miền xác định và miền giá trị của $f(x) $ và $g(x).$$  b)$ Tìm $g_0f$ và $f_0g.$

Lời giải

$a)$ $f(x) = \frac{x}{{1 + \left| x \right|}}$ có miền xác định : $D = R$
    $f( – x) =  – \frac{x}{{1 + \left| x \right|}} = -f(x) \Rightarrow f(x)$ lẻ.
Ta chỉ tìm miền giá trị ứng với $x\in [0, +\infty $] rồi sau đó lấy đối xứng qua $Oy$ : $\forall y \in
f((0, + \infty ));\exists x \in (0, + \infty ):y = \frac{x}{{1 + x}}$
  $ \Leftrightarrow (1 – y)x = y \Rightarrow \frac{y}{{1 – y}} \ge 0 \Leftrightarrow y \in
{\rm{[}}0,1)$
Lấy đối xứng qua $Oy$, miền giá trị $T = (-1,1)$
Tương tự $g(x)$ cũng là hàm số lẻ
$\Rightarrow $ Miền xác định $D = R\left\{ {\pm 1} \right\}$
Miền giá trị : $T = R$
$b) (g_0f) = g[f(x)] =$ $\frac{{f\left( x \right)}}{{1 – \left| {f(x)} \right|}} = \frac{{\frac{x}{{1 +
\left| x \right|}}}}{{1 – \left| {\frac{x}{{1 + \left| x \right|}}} \right|}} = \frac{{\frac{x}{{1 +
\left| x \right|}}}}{{1 – \frac{{\left| x \right|}}{{1 + \left| x \right|}}}} = x$
$(f_0g)(x) = f[g(x)] =$ $\frac{{g\left( x \right)}}{{1 + \left| {g(x)} \right|}} = \frac{{\frac{x}{{1 –
\left| x \right|}}}}{{1 + \left| {\frac{x}{{1 – \left| x \right|}}} \right|}}$        ($*)$
•   $ x \geq 0 : (*) \Leftrightarrow (f0g)(x) =$ $\frac{{\frac{x}{{1 – x}}}}{{1 + \left| {\frac{x}{{1 – x}}}
\right|}}$
*$ 0 \leq x * $x > 1$ : $\left| {\frac{x}{{1 – x}}} \right|$ = $ – \frac{x}{{1 – x}}$ $\Rightarrow (f0g)(x) = \frac{x}{{1 – 2x}}$
•   $ x – \left| x \right|}}} \right|}}$
* $-1 * $x Tóm lại : $(f_0g)(x) = \left\{ \begin{array}{l}
\frac{x}{{1 – 2\left| x \right|}}x 1\\
x{\rm{- 1  \end{array} \right.$

Thuộc chủ đề:Bài tập Hàm số Tag với:Tính chất của hàm số

Bài liên quan:

  1. Đề:   Cho họ đồ thị $(C_m): y=(m+2)x^2-2(m-4)x-15     (1)$a) Tìm điểm cố định của họ đồ thị.b) Viết phương trình đường thẳng đi qua các điểm cố định ấy.
  2. Đề: Cho hàm số $f$ xác định bởi: $y=f(x)=\frac{x}{1+\left| {x} \right|}$Cho biết hàm số ngược $y=f^{-1}(x)$  của hàm số trên         
  3. Đề: Cho $a,b$ là các số thực cho trước. Xác định tất cả các hàm số $f(x)$ thỏa mãn mỗi một tính chất sau đây:a) $f(a-x)=f(x)$, với mọi $x\in R$b) $f(a-x)+f(x)=b$, với mọi $x\in R$
  4. Đề: Cho hàm số $=f(x)=\frac{x^{2}}{x^{2}+1}$ với $ x\geq 0$Cho biết hàm số ngược $y=f^{-1}(x)$ của hàm số $y=f(x)$
  5. Đề: Cho hàm số f(x) xác định trên R thỏa mãn điều kiện${(f(x) – f(y))^2} \le |x-y|^3   \forall x,y \in R$        (1)Chứng minh rằng $f(x)$ có đạo hàm trên $R$ và $f(x) = C$, trong đó $C$ là một hằng số
  6. Đề:   Bỏ dấu trị tuyệt đối trong biểu thức của \(f(x)\)a) \(f(x)=|-3x+2|\)                                      b) $ f(x)=|2x+5||3-4x|$
  7. Đề: Cho hàm số: $f(x)=\left\{ \begin{array}{l} \frac{2x+3}{x+1}   khi   x\geq 0\\ \frac{\sqrt[3]{2+3x} }{x-2} khi  -2\leq x
  8. Đề: Cho hàm số:  $y = \frac{{{x^2}cos\alpha  – 2x + cos\alpha }}{{{x^2} – 2xcos \alpha  + 1}}$Với tham số $\alpha  \in (0; \pi)$. Chứng minh rằng với mọi giá trị của $x$, ta đều có $ – 1 \le y \le 1$
  9. Đề: Tìm tọa độ giao điểm của hai parabol$y = \frac{1}{2} x^2 – x$  và $   y = – 2x^2 + x + \frac{1}{2}$
  10. Đề: a) Vẽ đồ thị $(P)$ của hàm số $y=2x^2$.b) Trên đồ thị $(P)$ ta lấy hai điểm $A, B$ có hoành độ tương ứng là $1$ và $2$. Xác định các giá trị của $m$ và $n$ để đường thẳng $y=mx+n$ tiếp xúc với $(P)$ và song song $AB$.
  11. Đề: Cho hàm số $f(x)=\frac{4^x}{4^x+2} $ Chứng minh rằng nếu $a+b=1$ thì $f(a)+f(b)=1$
  12. Đề: a) Điểm $A(-2;2)$ có nằm trên đồ thị hàm số $y=-2(x+1)$ hay không ? Giải thích vì sao.b) Tìm phương trình đường thẳng đi qua giao điểm hai đường thẳng $y=2x+1, y=3x-4$ và song song với đường thẳng $y=\sqrt{2}x+15. $
  13. Đề: Xác định tính tuần hoàn và tìm chu kì (nếu có) của các hàm số sau:a) $y=\tan (2x-\frac{\pi}{4} )$                         b) $y= 2\sin^2(3x+\frac{\pi}{5} )$
  14. Đề: Cho hàm số $f(x)$ xác định và có đạo hàm mọi cấp trên $R$, và thỏa mãn điều kiện     $f'( {\frac{{x + y}}{2}} ) = \frac{{f(y) – f(x)}}{{y – x}},\forall x, y \in  R,x \ne y$        (1)Chứng minh:  $f(x) = f''(0)\frac{{{x^2}}}{2} + f'(0)x + f(0),\forall x \in R$
  15. Đề: Xét sự biến thiên của các hàm sốa) $y=\frac{x}{x-1} $;                           b) $y=-\frac{1}{x}$;                          c) $y=\frac{1}{x^2}$.

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bài tập tự luận về hàm số




Booktoan.com (2015 - 2022) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.