• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: Cho tứ diện $ABCD, P$ là một điểm tùy ý trong tứ diện. Gọi $A_1, B_1, C_1,D_1$ là hình chiếu của $P$ lên các mặt $BCD, ACD, ABD$ và $ABC$. Gọi $S$ và $r$ tương ứng là diện tích toàn phần và bán kính hình cầu nội tiếp tứ diện.  Chứng minh: $\frac{S_{BCD}}{PA_1}+\frac{S_{CDA}}{PB_1}+\frac{S_{DAB}}{PC_1}+\frac{S_{ABC}}{PD_1} \geq \frac{S}{r}$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

adsense
Đề bài: Cho tứ diện $ABCD, P$ là một điểm tùy ý trong tứ diện. Gọi $A_1, B_1, C_1,D_1$ là hình chiếu của $P$ lên các mặt $BCD, ACD, ABD$ và $ABC$. Gọi $S$ và $r$ tương ứng là diện tích toàn phần và bán kính hình cầu nội tiếp tứ diện.  Chứng minh: $\frac{S_{BCD}}{PA_1}+\frac{S_{CDA}}{PB_1}+\frac{S_{DAB}}{PC_1}+\frac{S_{ABC}}{PD_1} \geq \frac{S}{r}$

Bat dang thuc

Lời giải

Đề bài:
Cho tứ diện $ABCD, P$ là một điểm tùy ý trong tứ diện. Gọi $A_1, B_1, C_1,D_1$ là hình chiếu của $P$ lên các mặt $BCD, ACD, ABD$ và $ABC$. Gọi $S$ và $r$ tương ứng là diện tích toàn phần và bán kính hình cầu nội tiếp tứ diện.  Chứng minh: $\frac{S_{BCD}}{PA_1}+\frac{S_{CDA}}{PB_1}+\frac{S_{DAB}}{PC_1}+\frac{S_{ABC}}{PD_1} \geq \frac{S}{r}$
Lời giải

adsense

Giải
Đặt $a_1=\sqrt{\frac{S_{BCD}}{PA_1}}; a_2=\frac{S_{CDA}}{PB_1}; a_3=\frac{S_{DAB}}{PC_1}; \frac{S_{ABC}}{PD_1}$
    $b_1=\sqrt{S_{BCD}.PA_1};b_2=\sqrt{S_{CDA}.PB_1}; b_3=\sqrt{S_{DAB}.PC_1}; b_4=\sqrt{S_{ABC}.PD_1}$
Theo bất đẳng thức Bu-nhi-a-cốp-xki, ta có (ở đây đặt $T$ là vế trái của bất đẳng thức cần chứng minh)
   $T=(S_{BCD}.PA_1+S_{CDA}.PB_1+S_{DAB}.PC_1+S_{ABC}.PD_1) \geq S^2$
Chú ý rằng $S_{BCD}.PA_1=3.V_{P.BCD}, S_{CDA}.PB_1=3.V_{P.ACD}, S_{DAB}.PC_1=3.V_{P.ABD}, $
$S_{ABC}.PD_1=3.V_{P.ABC}$, do đó từ $(1)$ có:
   $3T(V_{P.BCD}+V_{P.ACD}+V_{P.ABD}+V_{P.ABC}) \geq S^2$
hay $T \geq \frac{S^2}{3V}$, trong đó $V$ là thể tích tứ diện $ABCD$
Mặt khác ta có $V=\frac{1}{3}Sr \Rightarrow T \geq \frac{S}{r} \Rightarrow $ Điều phải chứng minh
Dấu “=” có $\Leftrightarrow \frac{a_1}{b_1}+\frac{a_2}{b_2}+\frac{a_3}{b_3}+\frac{a_4}{b_4} \Leftrightarrow S_{NCD}=S_{ACD}=S_{ABD}=S_{ABC}$

=========
Chuyên mục: Các dạng bất đẳng thức khác

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Bài liên quan:

  1. Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{x^2-2x+5 }+\sqrt{ x^2+2x+10}  \geq \sqrt{ 5} $b) $\sqrt{(a-b)^2+c^2 }+\sqrt{(a+b)^2+c^2 } \geq  2\sqrt{ a^2+c^2} $
  2. Đề bài: 1)    Tìm a để bất phương trình sau đúng với $\forall x \in [- 2;4 ]:$$ – 4\sqrt {( 4 – x )( x + 2} )  \le x^2 – 2x  +  a  –  18 $            (1)2) Tìm a và b để bất đẳng thức sau đúng với $\forall x$ $| cos2x + acosx + b – 1| \le 1$      (2)
  3. Đề bài: Tìm: $\mathop {\lim }\limits_{n \to +\infty }\frac{a^{n}}{n^{\alpha}} (a,\alpha >0)$(Để ý:với $x\in R,|x|$ là ký hiệu phần nguyên của $x$,là số nguyên lớn nhất không vượt quá $x$)
  4. Đề bài: $\forall n\in N$\ $\left\{ \begin{array}{l} \end{array} \right.\left. 0,1 \right \},\forall a,b \geq 0$Chứng minh rằng: $|\sqrt[n]{a}-\sqrt[n]{b}|\leq \sqrt[n]{|a-b|}$
  5. Đề bài: Chứng minh rằng:$\sqrt{(a+c)^{2}+b^{2}}+\sqrt{(a-c)^{2}+b^{2}}\geq 2\sqrt{a^{2}+b^{2}}    ;\forall a,b,c \in R$
  6. Đề bài: Cho $n \in N$.Chứng minh rằng:$e^{x} \geq 1+\frac{x}{1!}+\frac{x^{2}}{2!}+…+\frac{x^{n}}{n!},\forall x \geq 0$
  7. Đề bài: Chứng minh rằng với $n$ nguyên dương, ta có:       $(1+2^2)(1+2^{2^{2}})(1+2^{2^{3}})\times …\times (1+2^{2^{n}})
  8. Đề bài: $a/$Chứng minh rằng:$\left ( x+ y\right )^{2}-xy+1\geq \left ( x +y\right )\sqrt{3},\forall x,y$$b/$Cho $\triangle ABC$.Chứng minh rằng: $\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}\geq \sqrt{3}$
  9. Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq  \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2  }+\sqrt{b^2-\sqrt{ 3}bc+c^2  } \geq  \sqrt{a^2-\sqrt{ 2-\sqrt{ 3} }ac+c^2  }$
  10. Đề bài: 1)    Chứng minh $x^2+2xy+3y^2+2x+6y+3\geq 0$ đúng với $\forall x,y$2)    Tìm $m$ để $9x^2+20y^2+4z^2-12xy+6xz+myz\geq 0$ đúng với $\forall x,y,z$3)    Giả sử $a > b > c$, chứng minh: $(x + a + b + c)^2 > 8(bx  +  ac)$ đúng với $\forall x$
  11. Đề bài: Chứng minh nếu $a,b,c\in (0;1)$ thì có ít nhất 1 bất đẳng thức sau sai:$4a(1-b)>1; 4b(1-c)>1;4c(1-a)>1$
  12. Đề bài: Chứng minh rằng:$n^{n+3}+(n+1)^{n+3}
  13. Đề bài: Chứng minh rằng:$-\frac{1}{2}\leq \frac{(a+b)(1-ab)}{(1+a^{2})(1+b^{2})}\leq \frac{1}{2}$
  14. Đề bài: Cho $1\geq n \in N,a_{i},b_{i} \in R,i=1,2,…,n$.Hãy chứng minh rằng:$(a_{1}b_{1}+a_{2}b_{2}+…+a_{n}b_{n})^{2}\leq (a_{1}^{2}+a_{2}^{2}+…+a_{n}^{2}).(b_{1}^{2}+…+b_{n}^{2})$
  15. Đề bài: Cho $x_1,x_2…x_n$ là $n$ số thực thuộc đoạn $[0,1]$. Chứng minh rằng ta luôn có bất đẳng thức:$x_1(1-x_2)+x_2(1-x_3)+…+x_n(1-x_1)\leq \frac{n}{2}           (1)$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.