• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Bất đẳng thức - Bài tập tự luận / Đề bài: 1)    Tìm a để bất phương trình sau đúng với $\forall x \in [- 2;4 ]:$$ – 4\sqrt {( 4 – x )( x + 2} )  \le x^2 – 2x  +  a  –  18 $            (1)2) Tìm a và b để bất đẳng thức sau đúng với $\forall x$ $| cos2x + acosx + b – 1| \le 1$      (2)

Đề bài: 1)    Tìm a để bất phương trình sau đúng với $\forall x \in [- 2;4 ]:$$ – 4\sqrt {( 4 – x )( x + 2} )  \le x^2 – 2x  +  a  –  18 $            (1)2) Tìm a và b để bất đẳng thức sau đúng với $\forall x$ $| cos2x + acosx + b – 1| \le 1$      (2)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: 1)    Tìm a để bất phương trình sau đúng với $\forall x \in [- 2;4 ]:$$ – 4\sqrt {( 4 – x )( x + 2} )  \le x^2 – 2x  +  a  –  18 $            (1)2) Tìm a và b để bất đẳng thức sau đúng với $\forall x$ $| cos2x + acosx + b – 1| \le 1$      (2)

Bat dang thuc

Lời giải

Đề bài:
1)    Tìm a để bất phương trình sau đúng với $\forall x \in [- 2;4 ]:$$ – 4\sqrt {( 4 – x )( x + 2} )  \le x^2 – 2x  +  a  –  18 $            (1)2) Tìm a và b để bất đẳng thức sau đúng với $\forall x$ $| cos2x + acosx + b – 1| \le 1$      (2)
Lời giải

1)    (1) $ \Leftrightarrow -{x^2} + 2{\rm{x  –  a  + 18  –  4}}\sqrt {{\rm{ – }}{{\rm{x}}^{\rm{2}}} + 2{\rm{x + 8}}}  \le 0$
Đặt $\sqrt {{\rm{ – }}{{\rm{x}}^{\rm{2}}} + 2{\rm{x + 8}}} $= t, với $x \in \left[ { – 2;4} \right]$
Nhận xét : $ -x^2+2x+8 = 9-(x-1)^2 \le 9$ suy ra $t \in \left[ {0;3} \right]$.
Do đó : (1) thỏa mãn với mọi $x \in \left[ { – 2;4} \right]$
$ \Leftrightarrow f(t) = {t^2} – 4t + 10 – a \le 0$ với mọi $t \in \left[ {0;3} \right]$
Lập bảng biến thiên của f(t) với $t \in \left[ {0;3} \right]$
Từ đó, ta có:
$f(t) \le 0$ với mọi $t \in \left[ {0;3} \right]$$ \Leftrightarrow 10 – a \le 0 \Leftrightarrow a \ge 10$

2)    Điều kiện cần là (2) phải đúng với $x = 0,\frac{\pi }{2},\pi  \Rightarrow $ ta được :
Với $x = 0$ : $\left| {a + b} \right| \le 1 \Leftrightarrow  – 1 \le a + b \le 1$                (3)
Với $x = \frac{\pi }{2}$ : $\left| {b – 2} \right| \le 1 \Leftrightarrow 1 \le b \le 3$                (4)
Với $x = \pi $ : $\left| { – a + b} \right| \le 1 \Leftrightarrow  – 1 \le  – a + b \le 1$            (5)
Cộng từng vế (3) và (5) ta được $ – 1 \le b \le 1$ (6)
(6) và (4) $ \Rightarrow b = 1$. Với $b = 1$ thay vào (3) và (5) ta lần lượt có
$\left\{ \begin{array}{l} -2 \le a \le 0 \\ 0 \le a \le 2 \end{array} \right. \Rightarrow a = 0$
Điều kiện đủ: Với $b = 1,a = 0$ (2) trở thành $\left| {c{\rm{os2x}}} \right| \le 1$ rõ ràng đúng với $\forall x$
Vậy để (2) đúng với $\forall x$ $ \Leftrightarrow a = 0,b = 1$

=========
Chuyên mục: Các dạng bất đẳng thức khác

Bài liên quan:

  1. Đề bài: Chứng minh bất dẳng thức:a) $\sin ^{4}x+\cos ^{8}x\leq  1                                               b) \sin^{10}x+\cos^{11}x \leq \ 1$ c)$(1+x)^{n}+(1-x)^{n} \leq  2^{n}; (|x|\leq  1), n \geq   1$
  2. Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{x^2-2x+5 }+\sqrt{ x^2+2x+10}  \geq \sqrt{ 5} $b) $\sqrt{(a-b)^2+c^2 }+\sqrt{(a+b)^2+c^2 } \geq  2\sqrt{ a^2+c^2} $
  3. Đề bài: Chứng minh bất đẳng thức:a) $\sqrt{ \cos^4a+\cos^4b}+\sin^2a+\sin^2b \geq  \sqrt{ 2} $b) $\sqrt{a^2-\sqrt{ 2}ab+b^2  }+\sqrt{b^2-\sqrt{ 3}bc+c^2  } \geq  \sqrt{a^2-\sqrt{ 2-\sqrt{ 3} }ac+c^2  }$
  4. Đề bài:  Cho $4$ số thực $a,b,c,d$ thỏa mãn điều kiện $(I) \begin{cases}2a+b=6 \\ 2c+d=2 \end{cases}$Hãy tìm giá trị nhỏ nhất của biểu thức    $U=\sqrt{(a-4)^2+(b-3)^2}+\sqrt{(a-c)^2+(b-d)^2}+\sqrt{(c+1)^2+(d+3)^2}$
  5. Đề bài: Chứng minh rằng : $ \sum\limits_{k = 1}^n {\frac{1}{k(2k-1)} } < \ln 4 $
  6. Đề bài: Chứng minh rằng : $b(a+1) \leq  e^a + b. \ln b, \forall a,b \geq 1$
  7. Đề bài: Chứng minh rằng : $ \frac{2}{3} < \frac{1}{\sqrt{n^3} }\sum\limits_{k = 1}^n {\sqrt k } < \frac{2}{3}\sqrt{\left ( \frac{n+1}{n}  \right )^3 }- \frac{2}{3\sqrt{n^3} }, \forall n \in  N$
  8. Đề bài: Cho $ x>y>0$. Chứng minh rằng : $ (x-y)[2-(x+y)]
  9. Đề bài: Chứng minh rằng: \(\sqrt{a^{2}+b^{2}}+\sqrt{c^{2}+d^{2}}\geq \sqrt{(a+c)^{2}+(b+d)^{2}}\)  (1)
  10. Đề bài: Cho $k$ và $n$ là các số nguyên thỏa mãn \(0 \le k \le n\). Chứng minh rằng: \(C_{2n + k}^n.C_{2n – k}^n \le {\left( {C_{2n}^n} \right)^2}\)
  11. Đề bài: Giả sử $a\cos2x + b\cos x + 1 \ge 0$ đúng với $\forall x$. Chứng minh $|a|+|b| \le 2$
  12. Đề bài: Chứng minh rằng với mọi số $a,b,c\in [0,1]$ ta luôn có:  $(1+a+b+c)^{2}\geq 4(a^2+b^2+c^2)$.
  13. Đề bài: Chứng minh rằng:   $(x^2+3)(y^2+3)(z^2+3)\geq \frac{4}{27}(3xy+3yz+3zx)^2    (1) $ trong đó $x,y,z$ là các số thực.
  14. Đề bài: Cho $n$ số thực $a_{1}, a_2, …,a_n$ thuộc đoạn $[-1;1]$ thoả mãn:  $a_{1}^3+ a_2^3+…a_n^3=0$.Chứng minh rằng $a_{1}+ a_2+…a_n\leq \frac{n}{3}$
  15. Đề bài: Cho $n$ số thực không âm $x_1, x_2, …, x_n$ thỏa mãn điều kiện: $x_1+x_2+…+x_n\leq  \frac{1}{2} $Chứng minh rằng : $(1-x_1)(1-x_2)…(1-x_n)\geq  \frac{1}{2} $

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.