Số nghiệm nguyên của phương trình \(\log _{\frac{1}{2}}^2\left( {\frac{8}{{{x^2}}}} \right) - {\log _2}4x = - 2\) là: A. 0. B. 1. C. 2. D. 3. Lời giải: \(\log _{\frac{1}{2}}^2\left( {\frac{8}{{{x^2}}}} \right) - {\log _2}4x = - 2\,(1)\) Điều kiện: \(x > 0\) Khi đó: \((1) \Leftrightarrow {\left( {{{\log }_{\frac{1}{2}}}\left( {\frac{8}{{{x^2}}}} … [Đọc thêm...] vềSố nghiệm nguyên của phương trình \(\log _{\frac{1}{2}}^2\left( {\frac{8}{{{x^2}}}} \right) – {\log _2}4x = – 2\) là:
Số nghiệm nguyên của bất phương trình \(\log _{\sqrt 2 }^2\left( {2x} \right) – 23{\log _2}x + 7 < 0\) là
Số nghiệm nguyên của bất phương trình \(\log _{\sqrt 2 }^2\left( {2x} \right) - 23{\log _2}x + 7 < 0\) là A. Vô số. B. \(5.\) C. \(3.\) D. \(4.\) Lời giải: Điều kiện: \(x > 0\). \(\log _{\sqrt 2 }^2\left( {2x} \right) - 23{\log _2}x + 7 < 0\) \( \Leftrightarrow {\left[ {{{\log }_{{2^{\frac{1}{2}}}}}\left( {2x} \right)} \right]^2} - 23{\log _2}x … [Đọc thêm...] vềSố nghiệm nguyên của bất phương trình \(\log _{\sqrt 2 }^2\left( {2x} \right) – 23{\log _2}x + 7 < 0\) là
: Tập nghiệm của bất phương trình \(\log _2^2x – 5{\log _2}x + 6 \le 0\) là \(S = \left[ {a;b} \right]\). Tính \(2a + b\).
: Tập nghiệm của bất phương trình \(\log _2^2x - 5{\log _2}x + 6 \le 0\) là \(S = \left[ {a;b} \right]\). Tính \(2a + b\). A. \(8\) B. \( - 8\) C. \(7\) D. \({\rm{16}}\) Lời giải: Điều kiện \(x > 0\). Đặt \(t = {\log _2}x\) thì bất phương trình trở thành \({t^2} - 5t + 6 \le 0 \Leftrightarrow 2 \le t \le 3\). Thay \(t = {\log _2}x\) ta được \(2 \le … [Đọc thêm...] về: Tập nghiệm của bất phương trình \(\log _2^2x – 5{\log _2}x + 6 \le 0\) là \(S = \left[ {a;b} \right]\). Tính \(2a + b\).
. Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {x – 1} \right) + {\log _2}\left( {x – 1} \right) + {\log _2}\left( {x + 3} \right) \ge 1\) là
. Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 1} \right) + {\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 3} \right) \ge 1\) là A. \(\left[ {1;\, + \infty } \right)\). B. \(\left[ { - 1;\, + \infty } \right)\). C. \(\left( {1;\, + \infty } \right)\). D. \(\left( { - 3;\, + \infty } \right)\). Lời giải: Điều kiện: \(x > … [Đọc thêm...] về. Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {x – 1} \right) + {\log _2}\left( {x – 1} \right) + {\log _2}\left( {x + 3} \right) \ge 1\) là
Tập nghiệm S của bất phương trình \({\log _{\frac{2}{3}}}\left( {2x – 4} \right) + {\log _{\frac{2}{3}}}\left( {x + 3} \right) < {\log _{\frac{3}{2}}}\frac{1}{{28}}\) là
Tập nghiệm S của bất phương trình \({\log _{\frac{2}{3}}}\left( {2x - 4} \right) + {\log _{\frac{2}{3}}}\left( {x + 3} \right) < {\log _{\frac{3}{2}}}\frac{1}{{28}}\) là A. \(S = \left( {4;\, + \infty } \right)\). B. \(S = \left( {2;\;4} \right)\). C. \(S = \left( { - 5;\;4} \right)\). D. \(S = \left( { - \infty ;\; - 5} \right) \cup \left( {4;\; + \infty } … [Đọc thêm...] vềTập nghiệm S của bất phương trình \({\log _{\frac{2}{3}}}\left( {2x – 4} \right) + {\log _{\frac{2}{3}}}\left( {x + 3} \right) < {\log _{\frac{3}{2}}}\frac{1}{{28}}\) là
Tập \(P\) là tập hợp các nghiệm nguyên của bất phương trình \({\log _5}\left( {{x^2} – 6x + 5} \right) \le 1\). Số phần tử của tập \(P\) là
Tập \(P\) là tập hợp các nghiệm nguyên của bất phương trình \({\log _5}\left( {{x^2} - 6x + 5} \right) \le 1\). Số phần tử của tập \(P\) là A. \(2\). B. \(7\). C. \(5\). D. Vô số. Lời giải: Điều kiện:\({x^2} - 6x + 5 > 0 \Leftrightarrow \left[ \begin{array}{l}x < 1\\x > 5\end{array} \right.\) Ta có: \({\log _5}\left( {{x^2} - 6x + 5} \right) \le 1 … [Đọc thêm...] vềTập \(P\) là tập hợp các nghiệm nguyên của bất phương trình \({\log _5}\left( {{x^2} – 6x + 5} \right) \le 1\). Số phần tử của tập \(P\) là
Số nghiệm của phương trình \({\log _3}\left( {4x – {x^2}} \right) + {\log _{\frac{1}{3}}}\left( {\frac{2}{3}x – 1} \right) = 1\) là
Số nghiệm của phương trình \({\log _3}\left( {4x - {x^2}} \right) + {\log _{\frac{1}{3}}}\left( {\frac{2}{3}x - 1} \right) = 1\) là A. \(1\). B. \(2\). C. \(0\). D. \(3\). Lời giải: Điều kiện:\(\left\{ \begin{array}{l}4x - {x^2} > 0\\\frac{2}{3}x - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 < x < 4\\x > … [Đọc thêm...] vềSố nghiệm của phương trình \({\log _3}\left( {4x – {x^2}} \right) + {\log _{\frac{1}{3}}}\left( {\frac{2}{3}x – 1} \right) = 1\) là
Tổng tất cả các nghiệm của phương trình \({\log _{\sqrt 2 }}(x – 1) + {\log _2}{(x – 5)^2} = 4\)là:
Tổng tất cả các nghiệm của phương trình \({\log _{\sqrt 2 }}(x - 1) + {\log _2}{(x - 5)^2} = 4\)là: A. \(9\) B. \(6 + 2\sqrt 2 \). C.\(6 - 2\sqrt 2 \) . D. \(6 + 2\sqrt 3 \) Lời giải: Điều kiện \(\left\{ \begin{array}{l}x > 1\\x \ne 5\end{array} \right.\). PT\( \Leftrightarrow 2{\log _2}(x - 1) + 2{\log _2}\left| {x - 5} \right| = 4\) \( … [Đọc thêm...] vềTổng tất cả các nghiệm của phương trình \({\log _{\sqrt 2 }}(x – 1) + {\log _2}{(x – 5)^2} = 4\)là:
Gọi \(S\)là tập nghiệm của phương trình \({\log _{\sqrt 3 }}(2x – 1) – {\log _3}({x^2} + 2) = 1\). Số phần tử của \(S\)là:
Gọi \(S\)là tập nghiệm của phương trình \({\log _{\sqrt 3 }}(2x - 1) - {\log _3}({x^2} + 2) = 1\). Số phần tử của \(S\)là: A. \(0\). B. \(2\). C. \(3\). D. \(1\). Lời giải: Điều kiện \(2x - 1 > 0 \Leftrightarrow x > \frac{1}{2}\). PT\( \Leftrightarrow 2{\log _3}(2x - 1) = {\log _3}3 + {\log _3}({x^2} + 2)\) \( \Leftrightarrow {\log _3}{(2x - 1)^2} … [Đọc thêm...] vềGọi \(S\)là tập nghiệm của phương trình \({\log _{\sqrt 3 }}(2x – 1) – {\log _3}({x^2} + 2) = 1\). Số phần tử của \(S\)là:
Đề Phát triển TN 12 Môn Toán – BẮC NINH – SỐ 4 – 2023
Đề Phát triển TN 12 Môn Toán - BẮC NINH - SỐ 4 – 2023 ========== booktoan.com chia sẻ đến các ĐỀ THI THỦ TN THPT MÔN TOÁN 2023. Đề THI ĐỀU có đáp án chi tiết giúp các em đối chiếu, tham khảo để đánh giá năng lực bản thân. Chúc các em thành công và đạt kết quả cao trong CÁC kỳ thi năm nay. NGUỒN: BOOKTOAN.COM sưu tập trên internet.... ———– xem file de thi — ============= … [Đọc thêm...] vềĐề Phát triển TN 12 Môn Toán – BẮC NINH – SỐ 4 – 2023