• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Đồ thị Hàm số / Cho hàm số $y=f(x)=\dfrac{a_1x^2+b_1x+c_1}{a_2x+b_2}$ có đồ thị như hình dưới đây:

Cho hàm số $y=f(x)=\dfrac{a_1x^2+b_1x+c_1}{a_2x+b_2}$ có đồ thị như hình dưới đây:

Ngày 22/11/2025 Thuộc chủ đề:Trắc nghiệm Đồ thị Hàm số Tag với:DO THI HAM SO

Bài toán gốc

Cho hàm số $y=f(x)=\dfrac{a_1x^2+b_1x+c_1}{a_2x+b_2}$ có đồ thị như hình dưới đây:

de thi toan online

Tiệm cận đứng của đồ thị là đường có phương trình $x=m$ tính $m$?

A. $2$.

Phân tích và Phương pháp giải

Đây là dạng bài toán yêu cầu xác định tiệm cận đứng (TCD) của đồ thị hàm số hữu tỉ dựa trên hình vẽ hoặc công thức. Phương pháp giải chung là: Tiệm cận đứng $x=m$ là giá trị $x_0$ làm cho mẫu số của hàm số hữu tỉ bằng 0, đồng thời giới hạn của hàm số tại $x_0$ là vô cùng. Khi quan sát đồ thị, TCD là đường thẳng đứng mà các nhánh của đồ thị tiến sát vào (tiến về $\pm \infty$). Trong bài toán gốc (dựa vào đáp án $A. 2$), tiệm cận đứng là $x=2$.

Bài toán tương tự

Cho hàm số $y = \dfrac{x^2+3x-1}{2x+4}$. Tiệm cận đứng của đồ thị hàm số là đường thẳng nào sau đây? A. $x=1$. B. $y=-2$. C. $x=-2$. D. $x=2$. Đáp án đúng: C. Lời giải ngắn gọn: Tiệm cận đứng (TCD) là nghiệm của mẫu số, với điều kiện tử số khác 0 tại nghiệm đó. Ta có mẫu số $2x+4=0 \Leftrightarrow 2x=-4 \Leftrightarrow x=-2$. Thay $x=-2$ vào tử số: $(-2)^2+3(-2)-1 = 4-6-1 = -3 \ne 0$. Vậy, tiệm cận đứng là đường thẳng $x=-2$.

Bài liên quan:

  1. Cho hàm số $y=x-\dfrac{1}{x+1}$

    a) Đồ thị của hàm số có tiệm cận đứng là $x=1$.

  2. Cho hàm số ${y=\dfrac{-x^2+x+1}{x+1}}$ có đồ thị (C).
  3. Cho hàm số $y=\dfrac{1}{3}{{x}^{3}}-2{{x}^{2}}+3x-1$ có đồ thị $\left( C \right).$
  4. Xét đường thẳng $d:y=4-2x$ và đường cong $\left( C \right):y=\dfrac{2x+4}{x+1}$.
  5. Cho hàm số $y=\dfrac{x}{x-2}$. Xét tính đúng sai của các mệnh đề sau:
  6. Cho hàm số $y=f(x)={{x}^{4}}-2{{x}^{2}}-5$. Các khẳng định sau là đúng hay sai ?
  7. Cho hàm số $y=f(x)=2x^3-21x^2+60x-3$. Xét tính đúng sai của các phát biểu sau?
  8. Cho hàm số $y=f(x)=3x^3+4x^2+5x+1$. Xét tính đúng sai của các phát biểu sau?
  9. Cho hàm số $y=f(x)=\dfrac{-3x^2+5x+2}{-x+5}$. Xét tính đúng sai của các phát biểu sau?
  10. Cho hàm số $y=\dfrac{3x+2}{x+2}$ có đồ thị là $\left( C \right)$. Xét tính đúng sai của các khẳng định sau:
  11. Cho hàm số $f(x)=x^3-3x+1$. Các mệnh đề sau đúng hay sai?
  12. Cho $(C):y=\dfrac{2x-3}{-x-1},d:y=5x+m$. Biết $(C)$ và $d$ cắt nhau tại hai điểm $A,B$ sao cho đoạn $AB$ là nhỏ nhất, khi đó giá trị của tham số $m$ thuộc khoảng nào?
  13. Cho $(C):y=\dfrac{2x-2}{-x+2}$. Biết tiếp tuyến của $(C)$ tại điểm có hoành độ bằng $-1$ cắt hai đường tiệm cận của đồ thị $(C)$ tại hai điểm $A, B$. Tính diện tích tam giác $OAB$.
  14. Đồ thị $(C):y=\dfrac{4x+2}{x-1}$ và $d:y=3x-11$ cắt nhau tại hai điểm có hoành độ là $x_1,x_2$. Giá trị $x_1+x_2$ bằng
  15. Cho $(C):y=\dfrac{-2x+1}{3x+3},d:y=-x-2m$. Có bao nhiêu giá trị nguyên của tham số $-25\leq m\leq 25$ để $(C)$ và $d$ cắt nhau tại 2 điểm có hoành độ $x_1,x_2$ thỏa mãn $(x_1+2)(x_2+2){\geq}-1$?

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.