• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Xác suất

Lập tất cả các số tự nhiên gồm 4 chữ số đôi một khác nhau. Chọn ngẫu nhiên 1 số trong các số lập được. Tính xác suất để chọn được số chia hết cho 25

Ngày 06/12/2021 Thuộc chủ đề:Trắc nghiệm Xác suất Tag với:Xác suất

Câu hỏi: Lập tất cả các số tự nhiên gồm 4 chữ số đôi một khác nhau. Chọn ngẫu nhiên 1 số trong các số lập được. Tính xác suất để chọn được số chia hết cho 25 A. \(\frac{{11}}{{432}}\) B. \(\frac{{11}}{{234}}\) C. \(\frac{{11}}{{324}}\) D. \(\frac{{11}}{{342}}\) Lời Giải: Đây là các bài toán về Hoán vị, Chỉnh hợp, Tổ hợp có áp dụng các phép đếm. Số số tự nhiên … [Đọc thêm...] vềLập tất cả các số tự nhiên gồm 4 chữ số đôi một khác nhau. Chọn ngẫu nhiên 1 số trong các số lập được. Tính xác suất để chọn được số chia hết cho 25

Chiếc kim của bánh xe trong trò chơi “Chiếc nón kì diệu” có thể dừng lại ở một trong mười vị trí với khả năng như nhau. Xác suất để trong ba lần quay, chiếc kim của bánh xe đó lần lượt dừng lại ở ba vị trí khác nhau là

Ngày 06/12/2021 Thuộc chủ đề:Trắc nghiệm Xác suất Tag với:Xác suất

Câu hỏi: Chiếc kim của bánh xe trong trò chơi “Chiếc nón kì diệu” có thể dừng lại ở một trong mười vị trí với khả năng như nhau. Xác suất để trong ba lần quay, chiếc kim của bánh xe đó lần lượt dừng lại ở ba vị trí khác nhau là A. 0,001. B. 0,72. C. 0,072. D. 0,9 Lời Giải: Đây là các bài toán về Hoán vị, Chỉnh hợp, Tổ hợp có áp dụng các phép đếm. Số phần tử của … [Đọc thêm...] vềChiếc kim của bánh xe trong trò chơi “Chiếc nón kì diệu” có thể dừng lại ở một trong mười vị trí với khả năng như nhau. Xác suất để trong ba lần quay, chiếc kim của bánh xe đó lần lượt dừng lại ở ba vị trí khác nhau là

Hai người hẹn gặp nhau tại thư viện từ 8 giờ đến 9 giờ. Người đến trước đợi quá 10 phút mà không gặp thì rời đi. Tìm xác suất để hai người đi ngẫu nhiên mà gặp nhau?

Ngày 06/12/2021 Thuộc chủ đề:Trắc nghiệm Xác suất Tag với:Xác suất

Câu hỏi: Hai người hẹn gặp nhau tại thư viện từ 8 giờ đến 9 giờ. Người đến trước đợi quá 10 phút mà không gặp thì rời đi. Tìm xác suất để hai người đi ngẫu nhiên mà gặp nhau? A. \(\frac{{7}}{{36}}\) B. \(\frac{{11}}{{36}}\) C. \(\frac{{10}}{{36}}\) D. \(\frac{{13}}{{36}}\) Lời Giải: Đây là các bài toán về Hoán vị, Chỉnh hợp, Tổ hợp có áp dụng các phép đếm. Gọi … [Đọc thêm...] vềHai người hẹn gặp nhau tại thư viện từ 8 giờ đến 9 giờ. Người đến trước đợi quá 10 phút mà không gặp thì rời đi. Tìm xác suất để hai người đi ngẫu nhiên mà gặp nhau?

Để kiểm tra chất lượng sản phẩm từ một công ty sữa, người ta đã gửi đến bộ phận kiểm nghiệm 5 hộp sữa cam, 4 hộp sữa dâu và 3 hộp sữa nho. Tính xác suất để ba hộp sữa được chọn có cả ba loại.

Ngày 06/12/2021 Thuộc chủ đề:Trắc nghiệm Xác suất Tag với:Xác suất

Câu hỏi: Để kiểm tra chất lượng sản phẩm từ một công ty sữa, người ta đã gửi đến bộ phận kiểm nghiệm 5 hộp sữa cam, 4 hộp sữa dâu và 3 hộp sữa nho. Tính xác suất để ba hộp sữa được chọn có cả ba loại. A. \( \frac{8}{{11}}\). B. \( \frac{3}{{7}}\). C. \( \frac{3}{{11}}\). D. \( \frac{4}{{11}}\). Lời Giải: Đây là các bài toán về Hoán vị, Chỉnh hợp, Tổ hợp có áp … [Đọc thêm...] vềĐể kiểm tra chất lượng sản phẩm từ một công ty sữa, người ta đã gửi đến bộ phận kiểm nghiệm 5 hộp sữa cam, 4 hộp sữa dâu và 3 hộp sữa nho. Tính xác suất để ba hộp sữa được chọn có cả ba loại.

Gọi E là tập hợp các số tự nhiên có 3 chữ số đôi một khác nhau lập được từ các chữ số 1, 2, 3, 4, 7. Chọn ngẫu nhiên một phần tử của E. Tính xác suất để số được chọn chia hết cho 3

Ngày 06/12/2021 Thuộc chủ đề:Trắc nghiệm Xác suất Tag với:Xác suất

Câu hỏi: Gọi E là tập hợp các số tự nhiên có 3 chữ số đôi một khác nhau lập được từ các chữ số 1, 2, 3, 4, 7. Chọn ngẫu nhiên một phần tử của E. Tính xác suất để số được chọn chia hết cho 3 A. \(\frac{1}{5}\). B. \(\frac{2}{5}\). C. \(\frac{3}{5}\). D. \(\frac{4}{5}\). Lời Giải: Đây là các bài toán về Hoán vị, Chỉnh hợp, Tổ hợp có áp dụng các phép đếm. Số phần … [Đọc thêm...] vềGọi E là tập hợp các số tự nhiên có 3 chữ số đôi một khác nhau lập được từ các chữ số 1, 2, 3, 4, 7. Chọn ngẫu nhiên một phần tử của E. Tính xác suất để số được chọn chia hết cho 3

Hai xạ thủ cùng bắn, mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác xuất bắn trúng bia của hai xạ thủ lần lượt là \(\frac{1}{2}\) và \(\frac{1}{3}\). Tính xác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia.

Ngày 06/12/2021 Thuộc chủ đề:Trắc nghiệm Xác suất Tag với:Xác suất

Câu hỏi: Hai xạ thủ cùng bắn, mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác xuất bắn trúng bia của hai xạ thủ lần lượt là \(\frac{1}{2}\) và \(\frac{1}{3}\). Tính xác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia. A. \(\frac{1}{3}\) B. \(\frac{5}{6}\) C. \(\frac{1}{2}\) D. \(\frac{2}{3}\) Lời Giải: Đây là các bài toán về Hoán vị, … [Đọc thêm...] vềHai xạ thủ cùng bắn, mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác xuất bắn trúng bia của hai xạ thủ lần lượt là \(\frac{1}{2}\) và \(\frac{1}{3}\). Tính xác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia.

Kết quả (b,c) của việc gieo con súc sắc cân đối và đồng chất hai lần, trong đó b là số chấm suất hiện trong lần gieo đầu, c là số chấm suất hiện ở lần gieo thứ hai, được thay vào phương trình bậc hai \(x^2+bx+c = 0\). Tính xác suất để phương trình có nghiệm

Ngày 06/12/2021 Thuộc chủ đề:Trắc nghiệm Xác suất Tag với:Xác suất

Câu hỏi: Kết quả (b,c) của việc gieo con súc sắc cân đối và đồng chất hai lần, trong đó b là số chấm suất hiện trong lần gieo đầu, c là số chấm suất hiện ở lần gieo thứ hai, được thay vào phương trình bậc hai \(x^2+bx+c = 0\). Tính xác suất để phương trình có nghiệm A. \( \frac{{19}}{{36}}\). B. \( \frac{{1}}{{18}}\). C. \( \frac{{1}}{{2}}\). D. … [Đọc thêm...] vềKết quả (b,c) của việc gieo con súc sắc cân đối và đồng chất hai lần, trong đó b là số chấm suất hiện trong lần gieo đầu, c là số chấm suất hiện ở lần gieo thứ hai, được thay vào phương trình bậc hai \(x^2+bx+c = 0\). Tính xác suất để phương trình có nghiệm

Để thi học kỳ bằng hình thức vấn đáp, thầy cô đã chuẩn bị 50 câu hỏi cho ngân hàng đề thi. Bạn A đã học và làm được 20 câu trong đó. Để hoàn thành bài thi thì bạn A phải rút và trả lời 4 câu trong ngân hàng đề. Tính xác suất để bạn đó rút được 4 câu mà trong đó có ít nhất 1 câu đã học.

Ngày 06/12/2021 Thuộc chủ đề:Trắc nghiệm Xác suất Tag với:Xác suất

Câu hỏi: Để thi học kỳ bằng hình thức vấn đáp, thầy cô đã chuẩn bị 50 câu hỏi cho ngân hàng đề thi. Bạn A đã học và làm được 20 câu trong đó. Để hoàn thành bài thi thì bạn A phải rút và trả lời 4 câu trong ngân hàng đề. Tính xác suất để bạn đó rút được 4 câu mà trong đó có ít nhất 1 câu đã học. A. \(\frac{{C_{20}^4}}{{C_{50}^4}}\) B. \(1 - … [Đọc thêm...] vềĐể thi học kỳ bằng hình thức vấn đáp, thầy cô đã chuẩn bị 50 câu hỏi cho ngân hàng đề thi. Bạn A đã học và làm được 20 câu trong đó. Để hoàn thành bài thi thì bạn A phải rút và trả lời 4 câu trong ngân hàng đề. Tính xác suất để bạn đó rút được 4 câu mà trong đó có ít nhất 1 câu đã học.

Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách lên tàu. Mỗi hành khách độc lập với nhau. Chọn ngẫu nhiên một toa. Tìm xác suất để mỗi toa có ít nhất một hành khách bước lên tàu

Ngày 06/12/2021 Thuộc chủ đề:Trắc nghiệm Xác suất Tag với:Xác suất

Câu hỏi: Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách lên tàu. Mỗi hành khách độc lập với nhau. Chọn ngẫu nhiên một toa. Tìm xác suất để mỗi toa có ít nhất một hành khách bước lên tàu A. \( \frac{{20}}{{81}}\) B. \( \frac{{10}}{{27}}\) C. \( \frac{{50}}{{81}}\) D. \( \frac{{20}}{{243}}\) Lời Giải: Đây là các bài toán về Hoán vị, Chỉnh hợp, Tổ hợp có áp … [Đọc thêm...] vềMột đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách lên tàu. Mỗi hành khách độc lập với nhau. Chọn ngẫu nhiên một toa. Tìm xác suất để mỗi toa có ít nhất một hành khách bước lên tàu

Để tham gia hội thi "Khi tôi 18" do Huyện đoàn tổ chức vào ngày 26/03, Đoàn trường THPT Đoàn Thượng thành lập đội thi gồm có 10 học sinh nam và 5 học sinh nữ. Từ đội thi, Đoàn trường chọn 5 học sinh để tham gia phần thi tài năng. Tính xác suất để 5 học sinh được chọn có cả nam và nữ?

Ngày 06/12/2021 Thuộc chủ đề:Trắc nghiệm Xác suất Tag với:Xác suất

Câu hỏi: Để tham gia hội thi "Khi tôi 18" do Huyện đoàn tổ chức vào ngày 26/03, Đoàn trường THPT Đoàn Thượng thành lập đội thi gồm có 10 học sinh nam và 5 học sinh nữ. Từ đội thi, Đoàn trường chọn 5 học sinh để tham gia phần thi tài năng. Tính xác suất để 5 học sinh được chọn có cả nam và nữ? A. \( \frac{{240}}{{273}}\) B. \( \frac{{230}}{{273}}\) C. … [Đọc thêm...] vềĐể tham gia hội thi "Khi tôi 18" do Huyện đoàn tổ chức vào ngày 26/03, Đoàn trường THPT Đoàn Thượng thành lập đội thi gồm có 10 học sinh nam và 5 học sinh nữ. Từ đội thi, Đoàn trường chọn 5 học sinh để tham gia phần thi tài năng. Tính xác suất để 5 học sinh được chọn có cả nam và nữ?

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 24
  • Trang 25
  • Trang 26
  • Trang 27
  • Trang 28
  • Interim pages omitted …
  • Trang 49
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.