Một hộp chứa \(15\) quả cầu gồm \(6\) quả màu đỏ được đánh số từ \(1\) đến \(6\) và \(9\) quả màu xanh được đánh số từ \(1\) đến \(9\). Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng. A. \(\frac{9}{{35}}.\) B. \(\frac{{18}}{{35}}.\) C. \(\frac{4}{{35}}.\) D. \(\frac{1}{7}.\) Lời … [Đọc thêm...] vềMột hộp chứa \(15\) quả cầu gồm \(6\) quả màu đỏ được đánh số từ \(1\) đến \(6\) và \(9\) quả màu xanh được đánh số từ \(1\) đến \(9\). Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
Trắc nghiệm Xác suất
Có 30 tấm thẻ được đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để trong 10 tấm thẻ được chọn ra có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn, trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10.
Có 30 tấm thẻ được đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để trong 10 tấm thẻ được chọn ra có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn, trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10. A. \(\dfrac{{568}}{{667}}\) B. \(\dfrac{{1001}}{{3335}}\) C. \(\dfrac{{99}}{{667}}\) D. \(\dfrac{{200}}{{3335}}\) LỜI GIẢI Chọn ngẫu nhiên 10 tấm thẻ từ … [Đọc thêm...] vềCó 30 tấm thẻ được đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để trong 10 tấm thẻ được chọn ra có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn, trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10.
Cho biết có 2 lô sản phẩm. Lô I có 10 sản phẩm tốt và 5 sản phẩm xấu. Lô II có 12 sản phẩm tốt và 3 sản phẩm xấu. Có một người chọn ngẫu nhiên ra 2 sản phẩm từ lô I và 2 sản phẩm từ lô II một cách độc lập. Tính xác suất để cả 4 sản phẩm được chọn ra đều là sản phẩm tốt.
Cho biết có 2 lô sản phẩm. Lô I có 10 sản phẩm tốt và 5 sản phẩm xấu. Lô II có 12 sản phẩm tốt và 3 sản phẩm xấu. Có một người chọn ngẫu nhiên ra 2 sản phẩm từ lô I và 2 sản phẩm từ lô II một cách độc lập. Tính xác suất để cả 4 sản phẩm được chọn ra đều là sản phẩm tốt. LỜI GIẢI Số cách chọn 4 sản phẩm bất kì (2sp lô I + 2sp lô II) là \(C_{15}^2.C_{15}^2\) cách \( \Rightarrow … [Đọc thêm...] vềCho biết có 2 lô sản phẩm. Lô I có 10 sản phẩm tốt và 5 sản phẩm xấu. Lô II có 12 sản phẩm tốt và 3 sản phẩm xấu. Có một người chọn ngẫu nhiên ra 2 sản phẩm từ lô I và 2 sản phẩm từ lô II một cách độc lập. Tính xác suất để cả 4 sản phẩm được chọn ra đều là sản phẩm tốt.
. Cho tập \(A = \left\{ {1,2,3,4,5,6} \right\}\) . Gọi \(S\) là tập hợp các tam giác có độ dài ba cạnh là các phần tử của \(A\) . Chọn ngẫu nhiên một phần tử thuộc \(S\) . Xác suất để phần tử được chọn là một tam giác cân bằng.
Câu hỏi: . Cho tập \(A = \left\{ {1,2,3,4,5,6} \right\}\) . Gọi \(S\) là tập hợp các tam giác có độ dài ba cạnh là các phần tử của \(A\) . Chọn ngẫu nhiên một phần tử thuộc \(S\) . Xác suất để phần tử được chọn là một tam giác cân bằng. A. \(\frac{6}{{34}}\) . B. \(\frac{{19}}{{34}}\) . C. \(\frac{{27}}{{34}}\) . D. \(\frac{7}{{34}}\) . Lời giải Tập các bộ ba số khác nhau … [Đọc thêm...] về. Cho tập \(A = \left\{ {1,2,3,4,5,6} \right\}\) . Gọi \(S\) là tập hợp các tam giác có độ dài ba cạnh là các phần tử của \(A\) . Chọn ngẫu nhiên một phần tử thuộc \(S\) . Xác suất để phần tử được chọn là một tam giác cân bằng.
. Ở một Đoàn trường phổ thông có 5 thầy giáo, 4 cô giáo và 8 học sinh. Có bao nhiêu cách chọn ra một đoàn công tác gồm 7 người trong đó có 1 trưởng đoàn là thầy giáo, 1 phó đoàn là cô giáo và đoàn công tác phải có ít nhất 4 học sinh.
Câu hỏi: . Ở một Đoàn trường phổ thông có 5 thầy giáo, 4 cô giáo và 8 học sinh. Có bao nhiêu cách chọn ra một đoàn công tác gồm 7 người trong đó có 1 trưởng đoàn là thầy giáo, 1 phó đoàn là cô giáo và đoàn công tác phải có ít nhất 4 học sinh. A. \(6020\). B. \(10920\). C. \(9800\). D. \(10290\). Lời giải Trường hợp 1: Đoàn có 1 thầy giáo, 1 cô giáo, và 5 học sinh có: … [Đọc thêm...] về. Ở một Đoàn trường phổ thông có 5 thầy giáo, 4 cô giáo và 8 học sinh. Có bao nhiêu cách chọn ra một đoàn công tác gồm 7 người trong đó có 1 trưởng đoàn là thầy giáo, 1 phó đoàn là cô giáo và đoàn công tác phải có ít nhất 4 học sinh.
Thầy X có \(15\) cuốn sách gồm \(4\) cuốn sách toán, \(5\) cuốn sách lí và \(6\) cuốn sách hóá. Các cuốn sách đôi một khác nhau. Thầy X chọn ngẫu nhiên \(8\) cuốn sách để làm phần thưởng cho một học sinh. Tính xác suất để số cuốn sách còn lại của thầy X có đủ \(3\) môn.
Câu hỏi: Thầy X có \(15\) cuốn sách gồm \(4\) cuốn sách toán, \(5\) cuốn sách lí và \(6\) cuốn sách hóá. Các cuốn sách đôi một khác nhau. Thầy X chọn ngẫu nhiên \(8\) cuốn sách để làm phần thưởng cho một học sinh. Tính xác suất để số cuốn sách còn lại của thầy X có đủ \(3\) môn. A. \(\frac{5}{6}\). B. \(\frac{{661}}{{715}}\). C. \(\frac{{660}}{{713}}\). D. … [Đọc thêm...] vềThầy X có \(15\) cuốn sách gồm \(4\) cuốn sách toán, \(5\) cuốn sách lí và \(6\) cuốn sách hóá. Các cuốn sách đôi một khác nhau. Thầy X chọn ngẫu nhiên \(8\) cuốn sách để làm phần thưởng cho một học sinh. Tính xác suất để số cuốn sách còn lại của thầy X có đủ \(3\) môn.
. Có 8 người cùng vào thang máy ở tầng 1 của một tòa nhà cao 10 tầng và đi lên trên. Hỏi có bao nhiêu cách sắp xếp để trong 8 người đó có đúng 2 người cùng ra ở 1 tầng và mỗi người còn lại ra ở mỗi tầng khác nhau.
Câu hỏi: . Có 8 người cùng vào thang máy ở tầng 1 của một tòa nhà cao 10 tầng và đi lên trên. Hỏi có bao nhiêu cách sắp xếp để trong 8 người đó có đúng 2 người cùng ra ở 1 tầng và mỗi người còn lại ra ở mỗi tầng khác nhau. A. \(15240960\). B. \(5080320\). C. \(181440\). D. \(201600\). Lời giải Chọn 2 người trong 8 người có: \(C_8^2 = 28\) cách. Chọn 1 tầng trong 9 tầng để … [Đọc thêm...] về. Có 8 người cùng vào thang máy ở tầng 1 của một tòa nhà cao 10 tầng và đi lên trên. Hỏi có bao nhiêu cách sắp xếp để trong 8 người đó có đúng 2 người cùng ra ở 1 tầng và mỗi người còn lại ra ở mỗi tầng khác nhau.
. Một tổ gồm 10 học sinh gồm 4 học sinh nữ và 6 học sinh nam, xếp 10 học sinh thành một hàng dọc. Số cách xếp sao cho xuất hiện đúng 1 cặp và nữ đứng trước nam là
Câu hỏi: . Một tổ gồm 10 học sinh gồm 4 học sinh nữ và 6 học sinh nam, xếp 10 học sinh thành một hàng dọc. Số cách xếp sao cho xuất hiện đúng 1 cặp và nữ đứng trước nam là A. \(414720\). B. \(17280\). C. \(3628800\). D. \(24\). Lời giải Để xuất hiện đúng 1 cặp nam nữ và nữ đứng trước nam, ta cho nữ đứng gần nhau và đứng đầu hàng, số cách xếp là: 4! Nam xếp tiếp theo, số … [Đọc thêm...] về. Một tổ gồm 10 học sinh gồm 4 học sinh nữ và 6 học sinh nam, xếp 10 học sinh thành một hàng dọc. Số cách xếp sao cho xuất hiện đúng 1 cặp và nữ đứng trước nam là
. Trên giá sách có \(4\) quyển sách Toán, \(3\) quyển sách Vật Lí và \(2\) quyển sách Hóa học. Lấy ngẫu nhiên \(3\) quyển sách. Tính xác suất sao cho ba quyển lấy ra có ít nhất một quyển sách Toán.
Câu hỏi: . Trên giá sách có \(4\) quyển sách Toán, \(3\) quyển sách Vật Lí và \(2\) quyển sách Hóa học. Lấy ngẫu nhiên \(3\) quyển sách. Tính xác suất sao cho ba quyển lấy ra có ít nhất một quyển sách Toán. A. \(\frac{1}{3}\) . B. \(\frac{{37}}{{42}}\) . C. \(\frac{5}{6}\) . D. \(\frac{{19}}{{21}}\) Lời giải Số phần tử của không gian mẫu \(n\left( \Omega \right) = … [Đọc thêm...] về. Trên giá sách có \(4\) quyển sách Toán, \(3\) quyển sách Vật Lí và \(2\) quyển sách Hóa học. Lấy ngẫu nhiên \(3\) quyển sách. Tính xác suất sao cho ba quyển lấy ra có ít nhất một quyển sách Toán.
Một con thỏ di chuyển từ địa điểm \(A\) đến địa điểm \(B\) bằng cách qua các điểm nút thì chỉ di chuyển sang phải hoặc đi lên . Biết nếu thỏ di chuyển đến nút \(C\) thì bị cáo ăn thịt, tính xác suất để thỏ đến được vị trí \(B\) .
Câu hỏi: Một con thỏ di chuyển từ địa điểm \(A\) đến địa điểm \(B\) bằng cách qua các điểm nút thì chỉ di chuyển sang phải hoặc đi lên . Biết nếu thỏ di chuyển đến nút \(C\) thì bị cáo ăn thịt, tính xác suất để thỏ đến được vị trí \(B\) . A. \(\frac{1}{2}\) . B. \(\frac{2}{3}\) . C. \(\frac{3}{4}\) . D. \(\frac{5}{{12}}\) . Lời giải Vẽ thêm cho em điểm \(J\)ngay phía … [Đọc thêm...] vềMột con thỏ di chuyển từ địa điểm \(A\) đến địa điểm \(B\) bằng cách qua các điểm nút thì chỉ di chuyển sang phải hoặc đi lên . Biết nếu thỏ di chuyển đến nút \(C\) thì bị cáo ăn thịt, tính xác suất để thỏ đến được vị trí \(B\) .