• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan

Đề: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;-1;0), B(0;3;-4). Phương trình nào dưới đây là phương trình mặt cầu đường kính AB?

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;-1;0), B(0;3;-4). Phương trình nào dưới đây là phương trình mặt cầu đường kính AB? A. \({(x - 1)^2} + {(y - 1)^2} + {(z + 2)^2} = 9.\) B. \({(x - 1)^2} + {(y - 1)^2} + {(z + 2)^2} = 3.\)   C. \({(x - 1)^2} + {(y - 1)^2} + {(z - 2)^2} = … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;-1;0), B(0;3;-4). Phương trình nào dưới đây là phương trình mặt cầu đường kính AB?

Đề: Mặt phẳng \(\left( P \right):2x + 2y – z – 4 = 0\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 4y – 6z – 11 = 0.\) Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn. Tính bán kính đường tròn này.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Mặt phẳng \(\left( P \right):2x + 2y - z - 4 = 0\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y - 6z - 11 = 0.\) Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn. Tính bán kính đường tròn này. A. 4 B. 3 C. 5 D. \(\sqrt … [Đọc thêm...] vềĐề: Mặt phẳng \(\left( P \right):2x + 2y – z – 4 = 0\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 4y – 6z – 11 = 0.\) Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn. Tính bán kính đường tròn này.

Đề: Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu có tâm \(I\left( {1; – 4;3} \right)\) và đi qua \(A\left( {5; – 3;2} \right).\)

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu có tâm \(I\left( {1; - 4;3} \right)\) và đi qua \(A\left( {5; - 3;2} \right).\) A. \({\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 3} \right)^2} = 16.\) B. \({\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu có tâm \(I\left( {1; – 4;3} \right)\) và đi qua \(A\left( {5; – 3;2} \right).\)

Đề: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x – 2}}{2} = \frac{{y – 1}}{2} = \frac{{z + 1}}{{ – 1}}\) và điểm \(I\left( {2; – 1;1} \right).\) Viết phương trình mặt cầu cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông cân tại I.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 2}}{2} = \frac{{y - 1}}{2} = \frac{{z + 1}}{{ - 1}}\) và điểm \(I\left( {2; - 1;1} \right).\) Viết phương trình mặt cầu cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông cân tại I. A. \({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x – 2}}{2} = \frac{{y – 1}}{2} = \frac{{z + 1}}{{ – 1}}\) và điểm \(I\left( {2; – 1;1} \right).\) Viết phương trình mặt cầu cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông cân tại I.

Đề: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình \({x^2} + {y^2} + {z^2} – 4x + 2my + 6z + 13 = 0\) là phương trình của mặt cầu.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình \({x^2} + {y^2} + {z^2} - 4x + 2my + 6z + 13 = 0\) là phương trình của mặt cầu. A. \(m \ne 0\)  B. \(m C. \(m > 0\) D. \(m \in \mathbb{R}\) Hãy chọn trả lời đúng trước … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình \({x^2} + {y^2} + {z^2} – 4x + 2my + 6z + 13 = 0\) là phương trình của mặt cầu.

Đề: Trong không gian với hệ tọa độ \(Oxyz\) cho mặt cầu \(\left( S \right):\,{\left( {x + 1} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z – 3} \right)^2} = 3\).  Tìm tọa độ tâm \(I\) và bán kính \(R\) của \(\left( S \right)\).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ \(Oxyz\) cho mặt cầu \(\left( S \right):\,{\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 3} \right)^2} = 3\).  Tìm tọa độ tâm \(I\) và bán kính \(R\) của \(\left( S \right)\). A. \(I\left( { - 1;\,1;\,3} \right)\) và \(R = \sqrt 3 \). B. \(I\left( { - … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ \(Oxyz\) cho mặt cầu \(\left( S \right):\,{\left( {x + 1} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z – 3} \right)^2} = 3\).  Tìm tọa độ tâm \(I\) và bán kính \(R\) của \(\left( S \right)\).

Đề: Trong không gian hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình của mặt cầu có tâm \(I\left( { – 2;3;4} \right)\) và tiếp xúc với mặt phẳng \(\left( {Oyz} \right)\) ?

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình của mặt cầu có tâm \(I\left( { - 2;3;4} \right)\) và tiếp xúc với mặt phẳng \(\left( {Oyz} \right)\) ? A. \({\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z + 4} \right)^2} = 2\). B. \({\left( {x + 2} \right)^2} + … [Đọc thêm...] vềĐề: Trong không gian hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình của mặt cầu có tâm \(I\left( { – 2;3;4} \right)\) và tiếp xúc với mặt phẳng \(\left( {Oyz} \right)\) ?

Đề: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 2.\) Tìm tâm I và tính bán kính của mặt cầu (S).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 2.\) Tìm tâm I và tính bán kính của mặt cầu (S). A. \(I\left( { - 1;1;0} \right)\) và \(R = 2.\) B. \(I\left( { - 1;1;0} \right)\) và \(R = \sqrt 2 .\) C. … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 2.\) Tìm tâm I và tính bán kính của mặt cầu (S).

Đề: Trong không gian độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x – 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 1} \right)^2} = 100\) và mặt phẳng \(\left( \alpha  \right):2{\rm{x}} – 2y – z + 9 = 0.\) Mặt phẳng \(\left( \alpha  \right)\) cắt mặt cầu (S) theo một đường tròn (C). Tính bán kính R của đường tròn (C).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 100\) và mặt phẳng \(\left( \alpha  \right):2{\rm{x}} - 2y - z + 9 = 0.\) Mặt phẳng \(\left( \alpha  \right)\) cắt mặt cầu (S) theo một đường tròn (C). Tính bán kính R của đường tròn (C). A. … [Đọc thêm...] vềĐề: Trong không gian độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x – 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 1} \right)^2} = 100\) và mặt phẳng \(\left( \alpha  \right):2{\rm{x}} – 2y – z + 9 = 0.\) Mặt phẳng \(\left( \alpha  \right)\) cắt mặt cầu (S) theo một đường tròn (C). Tính bán kính R của đường tròn (C).

Đề:  Trong không gian tọa độ Oxyz, cho hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} + 4{\rm{x}} + 2y + z = 0,\)\(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} – 2{\rm{x}} – y – z = 0\) cắt nhau theo một đường tròn (C) và ba điểm \(A\left( {1;0;0} \right),\)\(B\left( {0;2;0} \right),C\left( {0;0;3} \right).\) Hỏi có tất cả bao nhiêu mặt cầu có tâm thuộc mặt phẳng chứa đường tròn (C) và tiếp xúc với ba đường thẳng AB, BC, AC?

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi:  Trong không gian tọa độ Oxyz, cho hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} + 4{\rm{x}} + 2y + z = 0,\)\(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} - 2{\rm{x}} - y - z = 0\) cắt nhau theo một đường tròn (C) và ba điểm \(A\left( {1;0;0} \right),\)\(B\left( {0;2;0} \right),C\left( {0;0;3} \right).\) Hỏi có tất cả bao nhiêu mặt cầu có … [Đọc thêm...] vềĐề:  Trong không gian tọa độ Oxyz, cho hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} + 4{\rm{x}} + 2y + z = 0,\)\(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} – 2{\rm{x}} – y – z = 0\) cắt nhau theo một đường tròn (C) và ba điểm \(A\left( {1;0;0} \right),\)\(B\left( {0;2;0} \right),C\left( {0;0;3} \right).\) Hỏi có tất cả bao nhiêu mặt cầu có tâm thuộc mặt phẳng chứa đường tròn (C) và tiếp xúc với ba đường thẳng AB, BC, AC?

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 12
  • Trang 13
  • Trang 14
  • Trang 15
  • Trang 16
  • Interim pages omitted …
  • Trang 21
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.