==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu \(\left( S \right)\) có tâm \(I\left( {1;0; - 3} \right)\) và đi qua điểm \(M\left( {2;2; - 1} \right).\) A. \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 3} \right)^2} = 9.\) B. \(\left( S \right):{\left( {x - 1} \right)^2} + … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu \(\left( S \right)\) có tâm \(I\left( {1;0; – 3} \right)\) và đi qua điểm \(M\left( {2;2; – 1} \right).\)
Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan
Đề: Trong không gian hệ tọa độ Oxyz, mặt phẳng \(\left( P \right):x + y + z = 0\) cắt mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 2} \right)^2} = 4\) theo một đường tròn có tọa độ tâm là:
==== Câu hỏi: Trong không gian hệ tọa độ Oxyz, mặt phẳng \(\left( P \right):x + y + z = 0\) cắt mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 2} \right)^2} = 4\) theo một đường tròn có tọa độ tâm là: A. \(\left( {1;1; - 2} \right)\) B. \(\left( {1; - 2;1} … [Đọc thêm...] vềĐề: Trong không gian hệ tọa độ Oxyz, mặt phẳng \(\left( P \right):x + y + z = 0\) cắt mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 2} \right)^2} = 4\) theo một đường tròn có tọa độ tâm là:
Đề: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x – y + 2z + 5 = 0\) và các điểm \(A\left( {0;0;4} \right),B\left( {2;0;0} \right)\). Mặt cầu \(\left( S \right)\) có bán kính nhỏ nhẩt, đi qua O, A, B và tiếp xúc với mặt phẳng (P) có tâm là:
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x - y + 2z + 5 = 0\) và các điểm \(A\left( {0;0;4} \right),B\left( {2;0;0} \right)\). Mặt cầu \(\left( S \right)\) có bán kính nhỏ nhẩt, đi qua O, A, B và tiếp xúc với mặt phẳng (P) có tâm là: A. \(I\left( {1;2;2} \right)\) B. \(I\left( {1; - … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x – y + 2z + 5 = 0\) và các điểm \(A\left( {0;0;4} \right),B\left( {2;0;0} \right)\). Mặt cầu \(\left( S \right)\) có bán kính nhỏ nhẩt, đi qua O, A, B và tiếp xúc với mặt phẳng (P) có tâm là:
Đề: Trong không gian toạ độ Oxyz, cho mặt cầu \((S):{(x + 2)^2} + {(y – 1)^2} + {(z – 2)^2} = 25.\) Tìm toạ độ tâm I và bán kính R của (S).
==== Câu hỏi: Trong không gian toạ độ Oxyz, cho mặt cầu \((S):{(x + 2)^2} + {(y - 1)^2} + {(z - 2)^2} = 25.\) Tìm toạ độ tâm I và bán kính R của (S). A. I(2;-1;-2) và R = 5 B. I(-2;1;2) và R =25 C. I(-2;1;2) và R = 5 D. I(2;-1;-2) và R = 25 Hãy chọn trả lời đúng … [Đọc thêm...] vềĐề: Trong không gian toạ độ Oxyz, cho mặt cầu \((S):{(x + 2)^2} + {(y – 1)^2} + {(z – 2)^2} = 25.\) Tìm toạ độ tâm I và bán kính R của (S).
Đề: Trong không gian toạ độ Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {z^2} + 4x – 2y + 4z + 5 = 0\) và mặt phẳng (P): x=3. Khẳng định nào sau đây là đúng?
==== Câu hỏi: Trong không gian toạ độ Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {z^2} + 4x - 2y + 4z + 5 = 0\) và mặt phẳng (P): x=3. Khẳng định nào sau đây là đúng? A. Giao của (S) và (P) là hai điểm phân biệt. B. Giao của (S) và (P) là một điểm C. Giao của (S) và (P) là một đường tròn. D. … [Đọc thêm...] vềĐề: Trong không gian toạ độ Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {z^2} + 4x – 2y + 4z + 5 = 0\) và mặt phẳng (P): x=3. Khẳng định nào sau đây là đúng?
Đề: Trong không gian toạ độ Oxyz, cho hai mặt phẳng \((P):x – 1 = 0\) và \((Q):z – 1 = 0\). Xác định quỹ tích tâm các mặt cầu tiếp xúc với cả hai mặt phẳng (P) và (Q).
==== Câu hỏi: Trong không gian toạ độ Oxyz, cho hai mặt phẳng \((P):x - 1 = 0\) và \((Q):z - 1 = 0\). Xác định quỹ tích tâm các mặt cầu tiếp xúc với cả hai mặt phẳng (P) và (Q). A. Quỹ tích là mặt phẳng có phương trình x=z B. Quỹ tích là mặt phẳng có phương trình x=z và x+z-2=0 C. Quỹ tích là hai mặt phẳng có … [Đọc thêm...] vềĐề: Trong không gian toạ độ Oxyz, cho hai mặt phẳng \((P):x – 1 = 0\) và \((Q):z – 1 = 0\). Xác định quỹ tích tâm các mặt cầu tiếp xúc với cả hai mặt phẳng (P) và (Q).
Đề: Trong không gian Oxyz, mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 4y – 4 = 0\) cắt mặt phẳng \(\left( P \right):x + y – z + 4 = 0\) theo giao tuyến đường tròn (C). Tính diện tích S của hình tròn giới hạn bởi (C).
==== Câu hỏi: Trong không gian Oxyz, mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y - 4 = 0\) cắt mặt phẳng \(\left( P \right):x + y - z + 4 = 0\) theo giao tuyến đường tròn (C). Tính diện tích S của hình tròn giới hạn bởi (C). A. \(S=6\pi\) B. \(S = \frac{{2\pi \sqrt {78} … [Đọc thêm...] vềĐề: Trong không gian Oxyz, mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 4y – 4 = 0\) cắt mặt phẳng \(\left( P \right):x + y – z + 4 = 0\) theo giao tuyến đường tròn (C). Tính diện tích S của hình tròn giới hạn bởi (C).
Đề: Trong không gian với hệ tọa độ Oxyz, xác định tọa độ tâm J của đường tròn giao tuyến của mặt cầu với mặt phẳng .
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, xác định tọa độ tâm J của đường tròn giao tuyến của mặt cầu với mặt phẳng . A. \(J\left( { - \frac{7}{3}; - \frac{7}{3}; - \frac{2}{3}} \right).\) B. \(J(-2;-2;-2)\) C. \(J\left( { - \frac{2}{3}; - \frac{7}{3}; - \frac{7}{3}} \right).\) … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, xác định tọa độ tâm J của đường tròn giao tuyến của mặt cầu với mặt phẳng .
Đề: Trong không gian với hệ tọa độ Oxyz, cho I(0; 2; 3). Viết phương trình mặt cầu tâm I tiếp xúc với trục Oy.
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho I(0; 2; 3). Viết phương trình mặt cầu tâm I tiếp xúc với trục Oy. A. \({x^2} + {(y + 2)^2} + {(z + 3)^3} = 3\) B. \({x^2} + {(y - 2)^2} + {(z - 3)^3} = 4\) C. \({x^2} + {(y - 2)^2} + {(z - 3)^3} = 9\) D. \({x^2} + {(y + 2)^2} + {(z + … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho I(0; 2; 3). Viết phương trình mặt cầu tâm I tiếp xúc với trục Oy.
Đề: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( {{S_m}} \right):{x^2} + {y^2} + {z^2} + 2mx – 2(m – 1)y – mz + m – 2 = 0.\) Với mọi \(m \in \mathbb{R},\) mặt cầu \(\left( {{S_m}} \right)\) luôn đi qua một đường tròn cố định. Tính bán kính r của đường tròn đó.
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( {{S_m}} \right):{x^2} + {y^2} + {z^2} + 2mx - 2(m - 1)y - mz + m - 2 = 0.\) Với mọi \(m \in \mathbb{R},\) mặt cầu \(\left( {{S_m}} \right)\) luôn đi qua một đường tròn cố định. Tính bán kính r của đường tròn đó. A. \(r = 3.\) B. \(r = \sqrt 2 … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( {{S_m}} \right):{x^2} + {y^2} + {z^2} + 2mx – 2(m – 1)y – mz + m – 2 = 0.\) Với mọi \(m \in \mathbb{R},\) mặt cầu \(\left( {{S_m}} \right)\) luôn đi qua một đường tròn cố định. Tính bán kính r của đường tròn đó.