• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan

Trong không gian Oxyz, cho mặt cầu \(\left( S \right){\rm{: }}{x^2} + {y^2} + {z^2} + 2x – 4y – 2z + \frac{9}{2} = 0\) và hai điểm \(A\left( {0;2;0} \right), B\left( {2; – 6; – 2} \right)\). Điểm \(M\left( {a;b;c} \right)\) thuộc \(\left( S \right)\) thỏa mãn \(\overrightarrow {MA} .\overrightarrow {MB} \) có giá trị nhỏ nhất. Tổng a + b + c bằng

Ngày 24/12/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

Câu hỏi: Trong không gian Oxyz, cho mặt cầu \(\left( S \right){\rm{: }}{x^2} + {y^2} + {z^2} + 2x – 4y – 2z + \frac{9}{2} = 0\) và hai điểm \(A\left( {0;2;0} \right), B\left( {2; – 6; – 2} \right)\). Điểm \(M\left( {a;b;c} \right)\) thuộc \(\left( S \right)\) thỏa mãn \(\overrightarrow {MA} .\overrightarrow {MB} \) có giá trị nhỏ nhất. Tổng a + b + c bằng A. -1 B. … [Đọc thêm...] vềTrong không gian Oxyz, cho mặt cầu \(\left( S \right){\rm{: }}{x^2} + {y^2} + {z^2} + 2x – 4y – 2z + \frac{9}{2} = 0\) và hai điểm \(A\left( {0;2;0} \right), B\left( {2; – 6; – 2} \right)\). Điểm \(M\left( {a;b;c} \right)\) thuộc \(\left( S \right)\) thỏa mãn \(\overrightarrow {MA} .\overrightarrow {MB} \) có giá trị nhỏ nhất. Tổng a + b + c bằng

Trong không gian với hệ trục tọa độ Oxyz, cho các điểm \(A\left( {0\,;\, – 1\,;\,3} \right),B\left( { – 2\,;\, – 8\,;\, – 4} \right), C\left( {2\,;\, – 1\,;\,1} \right)\) và mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 14\). Gọi \(M\left( {{x_M}\,;\,{y_M}\,;\,{z_M}} \right)\) là điểm trên \(\left( S \right)\) sao cho biểu thức \(\left| {3\overrightarrow {MA} – 2\overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất. Tính \(P = {x_M} + {y_M}\).

Ngày 24/12/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

Câu hỏi: Trong không gian với hệ trục tọa độ Oxyz, cho các điểm \(A\left( {0\,;\, – 1\,;\,3} \right),B\left( { – 2\,;\, – 8\,;\, – 4} \right), C\left( {2\,;\, – 1\,;\,1} \right)\) và mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 14\). Gọi \(M\left( {{x_M}\,;\,{y_M}\,;\,{z_M}} \right)\) là điểm trên \(\left( S … [Đọc thêm...] vềTrong không gian với hệ trục tọa độ Oxyz, cho các điểm \(A\left( {0\,;\, – 1\,;\,3} \right),B\left( { – 2\,;\, – 8\,;\, – 4} \right), C\left( {2\,;\, – 1\,;\,1} \right)\) và mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 14\). Gọi \(M\left( {{x_M}\,;\,{y_M}\,;\,{z_M}} \right)\) là điểm trên \(\left( S \right)\) sao cho biểu thức \(\left| {3\overrightarrow {MA} – 2\overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất. Tính \(P = {x_M} + {y_M}\).

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {z^2} – 2x – 4y – 4 = 0\) và hai điểm \(A(4;2;4),\,\,B(1;4;2)\). MN là dây cung của mặt cầu thỏa mãn \(\overrightarrow {MN}\) cùng hướng với \(\vec u = (0;1;1)\) và \(MN = 4\sqrt 2\). Tính giá trị lớn nhất của \(\left| {AM – BN} \right|\).

Ngày 24/12/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {z^2} – 2x – 4y – 4 = 0\) và hai điểm \(A(4;2;4),\,\,B(1;4;2)\). MN là dây cung của mặt cầu thỏa mãn \(\overrightarrow {MN}\) cùng hướng với \(\vec u = (0;1;1)\) và \(MN = 4\sqrt 2\). Tính giá trị lớn nhất của \(\left| {AM – BN} \right|\). A. \(\sqrt {41}\) B. 7 C. \(4\sqrt 2\) D. … [Đọc thêm...] vềTrong không gian với hệ tọa độ Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {z^2} – 2x – 4y – 4 = 0\) và hai điểm \(A(4;2;4),\,\,B(1;4;2)\). MN là dây cung của mặt cầu thỏa mãn \(\overrightarrow {MN}\) cùng hướng với \(\vec u = (0;1;1)\) và \(MN = 4\sqrt 2\). Tính giá trị lớn nhất của \(\left| {AM – BN} \right|\).

Trong không gian với hệ trục tọa độ \(Oxyz\), cho hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} = 1,\left( {{S_2}} \right):{x^2} + {\left( {y – 4} \right)^2} + {z^2} = 4\) và các điểm \(A\left( {4;0;0} \right), B\left( {\frac{1}{4};0;0} \right), C\left( {1;4;0} \right), D\left( {4;4;0} \right)\). Gọi M là điểm thay đổi trên \(\left( {{S_1}} \right)\), N là điểm thay đổi trên \(\left( {{S_2}} \right)\). Giá trị nhỏ nhất của biểu thức Q = MA + 2ND + 4MN + 4BC là

Ngày 24/12/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

Câu hỏi: Trong không gian với hệ trục tọa độ \(Oxyz\), cho hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} = 1,\left( {{S_2}} \right):{x^2} + {\left( {y – 4} \right)^2} + {z^2} = 4\) và các điểm \(A\left( {4;0;0} \right), B\left( {\frac{1}{4};0;0} \right), C\left( {1;4;0} \right), D\left( {4;4;0} \right)\). Gọi M là điểm thay đổi trên \(\left( {{S_1}} \right)\), N … [Đọc thêm...] vềTrong không gian với hệ trục tọa độ \(Oxyz\), cho hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} = 1,\left( {{S_2}} \right):{x^2} + {\left( {y – 4} \right)^2} + {z^2} = 4\) và các điểm \(A\left( {4;0;0} \right), B\left( {\frac{1}{4};0;0} \right), C\left( {1;4;0} \right), D\left( {4;4;0} \right)\). Gọi M là điểm thay đổi trên \(\left( {{S_1}} \right)\), N là điểm thay đổi trên \(\left( {{S_2}} \right)\). Giá trị nhỏ nhất của biểu thức Q = MA + 2ND + 4MN + 4BC là

Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {0;{\rm{ }}1;{\rm{ }}1} \right), B\left( {3;{\rm{ }}0; – 1} \right), C\left( {0;{\rm{ }}21; – 19} \right)\) và mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z – 1} \right)^2} = 1\). \(M\left( {a;{\rm{ }}b;{\rm{ }}c} \right)\) là điểm thuộc mặt cầu \(\left( S \right)\) sao cho biểu thức \(T = 3M{A^2} + 2M{B^2} + M{C^2}\) đạt giá trị nhỏ nhất. Tính tổng a + b + c.

Ngày 24/12/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {0;{\rm{ }}1;{\rm{ }}1} \right), B\left( {3;{\rm{ }}0; – 1} \right), C\left( {0;{\rm{ }}21; – 19} \right)\) và mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z – 1} \right)^2} = 1\). \(M\left( {a;{\rm{ }}b;{\rm{ }}c} \right)\) là điểm thuộc mặt cầu \(\left( S … [Đọc thêm...] vềTrong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {0;{\rm{ }}1;{\rm{ }}1} \right), B\left( {3;{\rm{ }}0; – 1} \right), C\left( {0;{\rm{ }}21; – 19} \right)\) và mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z – 1} \right)^2} = 1\). \(M\left( {a;{\rm{ }}b;{\rm{ }}c} \right)\) là điểm thuộc mặt cầu \(\left( S \right)\) sao cho biểu thức \(T = 3M{A^2} + 2M{B^2} + M{C^2}\) đạt giá trị nhỏ nhất. Tính tổng a + b + c.

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {5;1; – 1} \right), B\left( {14; – 3;3} \right)\) và đường thẳng \(\Delta \) có vectơ chỉ phương \(\vec u = \left( {1;2;2} \right)\). Gọi C, D lần lượt là hình chiếu của A và B lên \(\Delta \). Mặt cầu đi qua hai điểm C, D có diện tích nhỏ nhất là

Ngày 24/12/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {5;1; – 1} \right), B\left( {14; – 3;3} \right)\) và đường thẳng \(\Delta \) có vectơ chỉ phương \(\vec u = \left( {1;2;2} \right)\). Gọi C, D lần lượt là hình chiếu của A và B lên \(\Delta \). Mặt cầu đi qua hai điểm C, D có diện tích nhỏ nhất là A. \({\rm{36\pi }}\) B. \(44{\rm{\pi }}\) C. … [Đọc thêm...] vềTrong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {5;1; – 1} \right), B\left( {14; – 3;3} \right)\) và đường thẳng \(\Delta \) có vectơ chỉ phương \(\vec u = \left( {1;2;2} \right)\). Gọi C, D lần lượt là hình chiếu của A và B lên \(\Delta \). Mặt cầu đi qua hai điểm C, D có diện tích nhỏ nhất là

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {5;0;0} \right)\) và \(B\left( {3;4;0} \right)\). Với C là điểm nằm trên trục Oz, gọi H là trực tâm của tam giác ABC. Khi C di động trên trục Oz thì H luôn thuộc một đường tròn cố định. Bán kính của đường tròn đó bằng

Ngày 24/12/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {5;0;0} \right)\) và \(B\left( {3;4;0} \right)\). Với C là điểm nằm trên trục Oz, gọi H là trực tâm của tam giác ABC. Khi C di động trên trục Oz thì H luôn thuộc một đường tròn cố định. Bán kính của đường tròn đó bằng A. \(\sqrt 3\) B. \(\frac{{\sqrt 3 }}{2}\) C. \(\frac{{\sqrt 5 }}{2}\) D. … [Đọc thêm...] vềTrong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {5;0;0} \right)\) và \(B\left( {3;4;0} \right)\). Với C là điểm nằm trên trục Oz, gọi H là trực tâm của tam giác ABC. Khi C di động trên trục Oz thì H luôn thuộc một đường tròn cố định. Bán kính của đường tròn đó bằng

Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC nhọn có \(H\left( {2;2;1} \right), K\left( { – \frac{8}{3};\frac{4}{3};\frac{8}{3}} \right)\), O lần lượt là hình chiếu vuông góc của A, B, C trên các cạnh BC, AC, AB. Gọi I là trực tâm tam giác ABC. Phương trình mặt cầu \(\left( S \right)\) tâm A, đi qua điểm I là

Ngày 24/12/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC nhọn có \(H\left( {2;2;1} \right), K\left( { – \frac{8}{3};\frac{4}{3};\frac{8}{3}} \right)\), O lần lượt là hình chiếu vuông góc của A, B, C trên các cạnh BC, AC, AB. Gọi I là trực tâm tam giác ABC. Phương trình mặt cầu \(\left( S \right)\) tâm A, đi qua điểm I là A. \(\left( S \right):{\left( {x + 4} … [Đọc thêm...] vềTrong không gian với hệ tọa độ Oxyz, cho tam giác ABC nhọn có \(H\left( {2;2;1} \right), K\left( { – \frac{8}{3};\frac{4}{3};\frac{8}{3}} \right)\), O lần lượt là hình chiếu vuông góc của A, B, C trên các cạnh BC, AC, AB. Gọi I là trực tâm tam giác ABC. Phương trình mặt cầu \(\left( S \right)\) tâm A, đi qua điểm I là

Đề: Cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 2} \right)^2} = 49\).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 2} \right)^2} = 49\). Phương trình nào sau đây là phương trình của mặt phẳng tiếp xúc với mặt cầu (S)? A. \(6{\rm{x}} + 2y + 3{\rm{z}} = 0\) B. \({\rm{2x}} + 3y + 6{\rm{z - 5}} = 0\) C. … [Đọc thêm...] vềĐề: Cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 2} \right)^2} = 49\).

Đề: Cho mặt cầu \(\left( S \right):{\rm{ }}{x^2} + {y^2} + {z^2} – 2x – 4y + z – 1 = 0\).  Xác định tọa độ tâm I của mặt cầu.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Cho mặt cầu \(\left( S \right):{\rm{ }}{x^2} + {y^2} + {z^2} - 2x - 4y + z - 1 = 0\).  Xác định tọa độ tâm I của mặt cầu. A. \(I\left( {1;2; - \frac{1}{2}} \right)\) B. \(I\left( {2;4;1} \right)\) C. \(I\left( { - 2; - 4; - 1} \right)\) D. \(I\left( { - 1; - 2;\frac{1}{2}} … [Đọc thêm...] vềĐề: Cho mặt cầu \(\left( S \right):{\rm{ }}{x^2} + {y^2} + {z^2} – 2x – 4y + z – 1 = 0\).  Xác định tọa độ tâm I của mặt cầu.

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 9
  • Trang 10
  • Trang 11
  • Trang 12
  • Trang 13
  • Interim pages omitted …
  • Trang 21
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.