Câu hỏi:
Cho hình chóp\(S.ABCD\,\)có đáy\(ABCD\,\)là hình thoi cạnh\(a\,\);\(\widehat {ABC} = {60^\circ }\,\)và \(SB = a\,\). Hình chiếu vuông góc của điểm\(S\)lên mặt phẳng\((ABC)\)trùng với trọng tâm của tam giác\(ABC\). Gọi\(\varphi \)là góc giữa đường thẳng\(SB\)và mặt phẳng\((SCD)\). Tính\(\sin \varphi \).
A. \(\sin \varphi= \frac{{\sqrt 3 }}{2}\).
B. \(\sin … [Đọc thêm...] về Cho hình chóp\(S.ABCD\,\)có đáy\(ABCD\,\)là hình thoi cạnh\(a\,\);\(\widehat {ABC} = {60^\circ }\,\)và \(SB = a\,\). Hình chiếu vuông góc của điểm\(S\)lên mặt phẳng\((ABC)\)trùng với trọng tâm của tam giác\(ABC\). Gọi\(\varphi \)là góc giữa đường thẳng\(SB\)và mặt phẳng\((SCD)\). Tính\(\sin \varphi \).
Trac nghiem goc giua hai duong thang
Chohình hộp chữ nhật \(ABCD. A’B’C’D’\). Biết khoảng cách giữa\(AB\)và \(B’C\) bằng \(\frac{{2a\sqrt 5 }}{5}\), khoảng cách giữa\(BC\)và\(AB’\)bằng\(\frac{{16{a^3}\sqrt 3 }}{3}\), khoảng cách giữa\(AC\)và\(BD’\)bằng\(\frac{{a\sqrt 3 }}{3}\). Gọi\(16{a^3}\)là trung điểm\(B’C\). Tính tan của góc tạo bởi hai mặt phẳng\(\left( {BMD} \right)\)và\(\left( {B’AD} \right)\).
Câu hỏi:
Chohình hộp chữ nhật \(ABCD. A'B'C'D'\). Biết khoảng cách giữa\(AB\)và \(B'C\) bằng \(\frac{{2a\sqrt 5 }}{5}\), khoảng cách giữa\(BC\)và\(AB'\)bằng\(\frac{{16{a^3}\sqrt 3 }}{3}\), khoảng cách giữa\(AC\)và\(BD'\)bằng\(\frac{{a\sqrt 3 }}{3}\). Gọi\(16{a^3}\)là trung điểm\(B'C\). Tính tan của góc tạo bởi hai mặt phẳng\(\left( {BMD} \right)\)và\(\left( {B'AD} … [Đọc thêm...] về Chohình hộp chữ nhật \(ABCD. A’B’C’D’\). Biết khoảng cách giữa\(AB\)và \(B’C\) bằng \(\frac{{2a\sqrt 5 }}{5}\), khoảng cách giữa\(BC\)và\(AB’\)bằng\(\frac{{16{a^3}\sqrt 3 }}{3}\), khoảng cách giữa\(AC\)và\(BD’\)bằng\(\frac{{a\sqrt 3 }}{3}\). Gọi\(16{a^3}\)là trung điểm\(B’C\). Tính tan của góc tạo bởi hai mặt phẳng\(\left( {BMD} \right)\)và\(\left( {B’AD} \right)\).
Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình thoi cạnh\(a\). Biết\(\widehat {BAD} = {60^\circ }\), cạnh bên\(SA = a\sqrt 3 \)và vuông góc mặt phẳng \(\left( {ABCD} \right)\). Góc giữa hai mặt phẳng\((SAC)\)và\((SCD)\)là\(\alpha \). Tính\(\alpha \).
Câu hỏi:
Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình thoi cạnh\(a\). Biết\(\widehat {BAD} = {60^\circ }\), cạnh bên\(SA = a\sqrt 3 \)và vuông góc mặt phẳng \(\left( {ABCD} \right)\). Góc giữa hai mặt phẳng\((SAC)\)và\((SCD)\)là\(\alpha \). Tính\(\alpha \).
A. \({39^\circ }{13^\prime }\).
B. \({78^0}{28^\prime }\).
C. \({39^\circ }{12^\prime }\).
D. \({39^\circ … [Đọc thêm...] về Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình thoi cạnh\(a\). Biết\(\widehat {BAD} = {60^\circ }\), cạnh bên\(SA = a\sqrt 3 \)và vuông góc mặt phẳng \(\left( {ABCD} \right)\). Góc giữa hai mặt phẳng\((SAC)\)và\((SCD)\)là\(\alpha \). Tính\(\alpha \).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật tâm \(O\), đường thẳng \(SO\) vuông góc với . Biết \(AB = 2a\), \(AD = a\), \(SO = a\). Gọi \(J\), \(H\) là trung điểm của \(CD\), \(SB\). Tính cosin của góc giữa hai mặt phẳng \(\left( {AHJ} \right)\) và \(\left( {ABCD} \right)\).
Câu hỏi:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật tâm \(O\), đường thẳng \(SO\) vuông góc với . Biết \(AB = 2a\), \(AD = a\), \(SO = a\). Gọi \(J\), \(H\) là trung điểm của \(CD\), \(SB\). Tính cosin của góc giữa hai mặt phẳng \(\left( {AHJ} \right)\) và \(\left( {ABCD} \right)\).
A. \(0,231\).
B. \(0,436\).
C. \(0,741\).
D. … [Đọc thêm...] về Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật tâm \(O\), đường thẳng \(SO\) vuông góc với . Biết \(AB = 2a\), \(AD = a\), \(SO = a\). Gọi \(J\), \(H\) là trung điểm của \(CD\), \(SB\). Tính cosin của góc giữa hai mặt phẳng \(\left( {AHJ} \right)\) và \(\left( {ABCD} \right)\).
Cho lăng trụ\(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\)có đáy là tam giác đều, hình chiếu của\({A^\prime }\)trên mặt phẳng\((ABC)\)trùng với trung điểm\(H\)của cạnh\(BC\), cạnh bên tạo với đáy một góc\({30^\circ }\). Gọi\(M\)là điểm thuộc cạnh\(A{A^\prime }\)sao cho\(AM = 2M{A^\prime }\). Tính\( cosin \)của góc giữa\((MBC)\)và\(\left( {M{B^\prime }{C^\prime }} \right)\).
Câu hỏi:
Cho lăng trụ\(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\)có đáy là tam giác đều, hình chiếu của\({A^\prime }\)trên mặt phẳng\((ABC)\)trùng với trung điểm\(H\)của cạnh\(BC\), cạnh bên tạo với đáy một góc\({30^\circ }\). Gọi\(M\)là điểm thuộc cạnh\(A{A^\prime }\)sao cho\(AM = 2M{A^\prime }\). Tính\( cosin \)của góc giữa\((MBC)\)và\(\left( {M{B^\prime }{C^\prime }} … [Đọc thêm...] về Cho lăng trụ\(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\)có đáy là tam giác đều, hình chiếu của\({A^\prime }\)trên mặt phẳng\((ABC)\)trùng với trung điểm\(H\)của cạnh\(BC\), cạnh bên tạo với đáy một góc\({30^\circ }\). Gọi\(M\)là điểm thuộc cạnh\(A{A^\prime }\)sao cho\(AM = 2M{A^\prime }\). Tính\( cosin \)của góc giữa\((MBC)\)và\(\left( {M{B^\prime }{C^\prime }} \right)\).
Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình thang vuông tại\(A\)và\(B\),\(AB = a\), cạnh bên\(SA\)vuông góc với\((ABCD)\)và\(SA = 2a\), gọi\(M\)là trung điểm cạnh\(SD\). Góc giữa hai mặt phẳng\(\left( {MBC} \right)\)và\(\left( {ABCD} \right)\)bằng
Câu hỏi:
Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình thang vuông tại\(A\)và\(B\),\(AB = a\), cạnh bên\(SA\)vuông góc với\((ABCD)\)và\(SA = 2a\), gọi\(M\)là trung điểm cạnh\(SD\). Góc giữa hai mặt phẳng\(\left( {MBC} \right)\)và\(\left( {ABCD} \right)\)bằng
A. \({60^\circ }\).
B. \({30^\circ }\).
C. \({45^\circ }\).
D. \({120^\circ }\).
GY:
Cách … [Đọc thêm...] về Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình thang vuông tại\(A\)và\(B\),\(AB = a\), cạnh bên\(SA\)vuông góc với\((ABCD)\)và\(SA = 2a\), gọi\(M\)là trung điểm cạnh\(SD\). Góc giữa hai mặt phẳng\(\left( {MBC} \right)\)và\(\left( {ABCD} \right)\)bằng
Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình thoi nhưng không là hình vuông,\(AB = SA = SB = SD = a\). Biết rằng thể tích khối chóp bằng\(\frac{{{a^3}\sqrt 2 }}{6}\), khi đó góc giữa hai mặt phẳng\(\left( {SBC} \right)\)và\(\left( {SCD} \right)\)là
Câu hỏi:
Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình thoi nhưng không là hình vuông,\(AB = SA = SB = SD = a\). Biết rằng thể tích khối chóp bằng\(\frac{{{a^3}\sqrt 2 }}{6}\), khi đó góc giữa hai mặt phẳng\(\left( {SBC} \right)\)và\(\left( {SCD} \right)\)là
A. \({30^\circ }\).
B. \({45^\circ }\).
C. \({60^\circ }\).
D. \({90^\circ … [Đọc thêm...] về Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình thoi nhưng không là hình vuông,\(AB = SA = SB = SD = a\). Biết rằng thể tích khối chóp bằng\(\frac{{{a^3}\sqrt 2 }}{6}\), khi đó góc giữa hai mặt phẳng\(\left( {SBC} \right)\)và\(\left( {SCD} \right)\)là
Cho hình chóp\(S.ABC\)có đáy\(ABC\)là tam giác vuông cân tại\(C\). Gọi\(H\)là trung điểm\(AB\). Biết rằng\(SH\)vuông góc với mặt phẳng\(\left( {ABC} \right)\)và\(AB = SH = a\). Gọi\(\alpha \)là số đo góc tạo bởi hai mặt phẳng\(\left( {SBC} \right)\)và\(\left( {SAC} \right)\). Khẳng định nào sau đây là đúng?
Câu hỏi:
Cho hình chóp\(S.ABC\)có đáy\(ABC\)là tam giác vuông cân tại\(C\). Gọi\(H\)là trung điểm\(AB\). Biết rằng\(SH\)vuông góc với mặt phẳng\(\left( {ABC} \right)\)và\(AB = SH = a\). Gọi\(\alpha \)là số đo góc tạo bởi hai mặt phẳng\(\left( {SBC} \right)\)và\(\left( {SAC} \right)\). Khẳng định nào sau đây là đúng?
A. \(\alpha\in \left( {{{90}^\circ };{{100}^\circ }} … [Đọc thêm...] về Cho hình chóp\(S.ABC\)có đáy\(ABC\)là tam giác vuông cân tại\(C\). Gọi\(H\)là trung điểm\(AB\). Biết rằng\(SH\)vuông góc với mặt phẳng\(\left( {ABC} \right)\)và\(AB = SH = a\). Gọi\(\alpha \)là số đo góc tạo bởi hai mặt phẳng\(\left( {SBC} \right)\)và\(\left( {SAC} \right)\). Khẳng định nào sau đây là đúng?
Cho hình lăng trụ\(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\)có đáy là tam giác đều cạnh\(2a\), cạnh bên\(A{A^\prime } = \frac{{a\sqrt 5 }}{2}\). Hình chiếu vuông góc của\({A^\prime }\)trên mặt phẳng\(\left( {ABC} \right)\)là trung điểm\(H\)của cạnh\(AB\). Tính góc giữa đường thẳng\({A^\prime }H\)và mặt phẳng\(\left( {BC{C^\prime }{B^\prime }} \right)\).
Câu hỏi:
Cho hình lăng trụ\(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\)có đáy là tam giác đều cạnh\(2a\), cạnh bên\(A{A^\prime } = \frac{{a\sqrt 5 }}{2}\). Hình chiếu vuông góc của\({A^\prime }\)trên mặt phẳng\(\left( {ABC} \right)\)là trung điểm\(H\)của cạnh\(AB\). Tính góc giữa đường thẳng\({A^\prime }H\)và mặt phẳng\(\left( {BC{C^\prime }{B^\prime }} \right)\).
A. … [Đọc thêm...] về Cho hình lăng trụ\(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\)có đáy là tam giác đều cạnh\(2a\), cạnh bên\(A{A^\prime } = \frac{{a\sqrt 5 }}{2}\). Hình chiếu vuông góc của\({A^\prime }\)trên mặt phẳng\(\left( {ABC} \right)\)là trung điểm\(H\)của cạnh\(AB\). Tính góc giữa đường thẳng\({A^\prime }H\)và mặt phẳng\(\left( {BC{C^\prime }{B^\prime }} \right)\).
Cho hình chóp tứ giác đều\(S.ABCD\),\(O\)là giao điểm của\(AC\)và\(BD\), biết. Gọi\(\alpha \)là góc giữa\(SA\)với mặt phẳng\((SBC)\). Tính\(\sin \alpha \).
Câu hỏi:
Cho hình chóp tứ giác đều\(S.ABCD\),\(O\)là giao điểm của\(AC\)và\(BD\), biết. Gọi\(\alpha \)là góc giữa\(SA\)với mặt phẳng\((SBC)\). Tính\(\sin \alpha \).
A. \(\sin \alpha= \frac{4}{{\sqrt {30} }}\).
B. \(\sin \alpha= \frac{2}{{\sqrt {15} }}\).
C. \(\sin \alpha= \frac{2}{{\sqrt {30} }}\).
D. \(\sin \alpha= \frac{4}{{\sqrt {15} … [Đọc thêm...] về Cho hình chóp tứ giác đều\(S.ABCD\),\(O\)là giao điểm của\(AC\)và\(BD\), biết. Gọi\(\alpha \)là góc giữa\(SA\)với mặt phẳng\((SBC)\). Tính\(\sin \alpha \).