• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Cuc tri VDC - Trả lời ngắn

Một vật chuyển động với vận tốc $v\left( \text{km/h} \right)$ phụ thuộc vào thời gian $t\left( \text{h} \right)$ có đồ thị của hàm số dạng hàm bậc ba như hình bên

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Cuc tri VDC - Trả lời ngắn

Một vật chuyển động với vận tốc $v\left( \text{km/h} \right)$ phụ thuộc vào thời gian $t\left( \text{h} \right)$ có đồ thị của hàm số dạng hàm bậc ba như hình bên. Biết rằng tại thời điểm ${{t}_{1}}=1\text{h}$ vật có vận tốc ${{v}_{1}}=4\text{km/h}$ và tại thời điểm ${{t}_{2}}=2\text{h}$ vật có vận tốc ${{v}_{2}}=1\text{km/h}$. Hỏi vận tốc của vật tại thời điểm $t=3\text{h}$ … [Đọc thêm...] vềMột vật chuyển động với vận tốc $v\left( \text{km/h} \right)$ phụ thuộc vào thời gian $t\left( \text{h} \right)$ có đồ thị của hàm số dạng hàm bậc ba như hình bên

Nồng độ $C$ của một hoá chất sau $t$ giờ tiêm vào cơ thể được xác định bởi công thức $C\left( t \right)=\dfrac{3t}{27+{{t}^{3}}}$ với $t\ge 0$

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Cuc tri VDC - Trả lời ngắn

Nồng độ $C$ của một hoá chất sau $t$ giờ tiêm vào cơ thể được xác định bởi công thức $C\left( t \right)=\dfrac{3t}{27+{{t}^{3}}}$ với $t\ge 0$. Sau khoảng bao nhiêu giờ tiêm thì nồng độ của hoá chất trong máu là lớn nhất? (làm tròn kết quả đến hàng phần trăm)Lời giảiTrả lời: $2,38$ Ta có $C'\left( t \right)=\dfrac{3\left( 27+{{t}^{3}} \right)-3t.3{{t}^{2}}}{{{\left( … [Đọc thêm...] vềNồng độ $C$ của một hoá chất sau $t$ giờ tiêm vào cơ thể được xác định bởi công thức $C\left( t \right)=\dfrac{3t}{27+{{t}^{3}}}$ với $t\ge 0$

Anh Ba đang trên chiếc thuyền tại vị trí A cách bờ sông $2km$, anh dự định chèo thuyền vào bờ và tiếp tục chạy bộ theo một đường thẳng để đến một địa điểm B tọa lạc ven bờ sông, B cách vị trí O trên bờ gần với thuyền nhất là $4km$ (hình vẽ)

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Cuc tri VDC - Trả lời ngắn

Anh Ba đang trên chiếc thuyền tại vị trí A cách bờ sông $2km$, anh dự định chèo thuyền vào bờ và tiếp tục chạy bộ theo một đường thẳng để đến một địa điểm B tọa lạc ven bờ sông, B cách vị trí O trên bờ gần với thuyền nhất là $4km$ (hình vẽ). Biết rằng anh Ba chèo thuyền với vận tốc $6m/h$ và chạy bộ trên bờ với vận tốc $10km/h$. Khoảng thời gian ngắn nhất để anh Ba từ vị trí … [Đọc thêm...] vềAnh Ba đang trên chiếc thuyền tại vị trí A cách bờ sông $2km$, anh dự định chèo thuyền vào bờ và tiếp tục chạy bộ theo một đường thẳng để đến một địa điểm B tọa lạc ven bờ sông, B cách vị trí O trên bờ gần với thuyền nhất là $4km$ (hình vẽ)

Giả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới (trong vòng một số năm nhất định) tuân theo quy luật logistic được mô hình hoá bằng hàm số $f(t)=\dfrac{5000}{1+5{{e}^{-t}}},t\ge 0$ trong đó thời gian $t$ được tính bằng năm, kể từ khi phát hành sản phẩm mới

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Cuc tri VDC - Trả lời ngắn

Giả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới (trong vòng một số năm nhất định) tuân theo quy luật logistic được mô hình hoá bằng hàm số $f(t)=\dfrac{5000}{1+5{{e}^{-t}}},t\ge 0$ trong đó thời gian $t$ được tính bằng năm, kể từ khi phát hành sản phẩm mới. Khi đó, đạo hàm $f\prime (t)$ sẽ biểu thị tốc độ bán hàng. Hỏi sau khi phát hành bao nhiêu năm thì tốc độ bán … [Đọc thêm...] vềGiả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới (trong vòng một số năm nhất định) tuân theo quy luật logistic được mô hình hoá bằng hàm số $f(t)=\dfrac{5000}{1+5{{e}^{-t}}},t\ge 0$ trong đó thời gian $t$ được tính bằng năm, kể từ khi phát hành sản phẩm mới

Vận tốc của một tàu con thoi từ lúc cất cánh tại thời điểm $t=0\left( s \right)$ cho đến thời điểm $t=126\left( s \right)$ được cho bởi công thức $v(t)=0,001302{{t}^{3}}-0,09029{{t}^{2}}+83$ (vận tốc được tính bằng đơn vị $ft/s$ )

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Cuc tri VDC - Trả lời ngắn

Vận tốc của một tàu con thoi từ lúc cất cánh tại thời điểm $t=0\left( s \right)$ cho đến thời điểm $t=126\left( s \right)$ được cho bởi công thức $v(t)=0,001302{{t}^{3}}-0,09029{{t}^{2}}+83$ (vận tốc được tính bằng đơn vị $ft/s$ ). Hỏi tại thời điểm tàu con thoi đạt gia tốc nhỏ nhất thì vận tốc tàu con thoi gần bằng bao nhiêu? (Kết quả làm tròn đến hàng phần mười).Lời giảiTrả … [Đọc thêm...] vềVận tốc của một tàu con thoi từ lúc cất cánh tại thời điểm $t=0\left( s \right)$ cho đến thời điểm $t=126\left( s \right)$ được cho bởi công thức $v(t)=0,001302{{t}^{3}}-0,09029{{t}^{2}}+83$ (vận tốc được tính bằng đơn vị $ft/s$ )

Chào đón năm mới $2025$, Thành phố trang trí đèn led biểu tượng hình chữ $V$ được ghép từ các thanh $AB=4m$, $AC=5m$ sao cho tam giác $ABC$ vuông tại $B$

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Cuc tri VDC - Trả lời ngắn

Chào đón năm mới $2025$, Thành phố trang trí đèn led biểu tượng hình chữ $V$ được ghép từ các thanh $AB=4m$, $AC=5m$ sao cho tam giác $ABC$ vuông tại $B$. Để tăng hiệu ứng, các kỹ sư đã thiết kế một chuỗi led chạy từ $B$ xuống $A$ với vận tốc $4$ $\text{m/}$ phút và một chuỗi led chạy từ $A$ lên $C$ với vận tốc $10$ $\text{m/}$ phút. Sau khi đóng nguồn điện thì cả hai chuỗi led … [Đọc thêm...] vềChào đón năm mới $2025$, Thành phố trang trí đèn led biểu tượng hình chữ $V$ được ghép từ các thanh $AB=4m$, $AC=5m$ sao cho tam giác $ABC$ vuông tại $B$

Doanh số bán hàng của một loại sản phẩm (chục triệu đồng) trong một phiên livestream bán hàng kéo dài sáu giờ theo quy luật hàm số $f(t)=\dfrac{3t}{{{e}^{\dfrac{t}{2}}}},0\le t\le 6$ trong đó thời gian $t$ được tính bằng giờ kể từ khi bắt đầu livestream

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Cuc tri VDC - Trả lời ngắn

Doanh số bán hàng của một loại sản phẩm (chục triệu đồng) trong một phiên livestream bán hàng kéo dài sáu giờ theo quy luật hàm số $f(t)=\dfrac{3t}{{{e}^{\dfrac{t}{2}}}},0\le t\le 6$ trong đó thời gian $t$ được tính bằng giờ kể từ khi bắt đầu livestream. Khi đó, đạo hàm $f\prime (t)$ sẽ biểu thị tốc độ bán hàng. Hỏi sau bao nhiêu giờ kể từ khi bắt đầu phiên livestream thì doanh … [Đọc thêm...] vềDoanh số bán hàng của một loại sản phẩm (chục triệu đồng) trong một phiên livestream bán hàng kéo dài sáu giờ theo quy luật hàm số $f(t)=\dfrac{3t}{{{e}^{\dfrac{t}{2}}}},0\le t\le 6$ trong đó thời gian $t$ được tính bằng giờ kể từ khi bắt đầu livestream

Một vật chuyển động với vận tốc $\left( m/s \right)$ được xác định bởi hàm số $f(t)=-{{t}^{3}}+3{{t}^{2}}$ với $t\ge 0$

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Cuc tri VDC - Trả lời ngắn

Một vật chuyển động với vận tốc $\left( m/s \right)$ được xác định bởi hàm số $f(t)=-{{t}^{3}}+3{{t}^{2}}$ với $t\ge 0$. Khi đó $f\prime (t)$ là gia tốc của vật tại thời điểm $t$ (giây). Vận tốc của vật đạt được cao nhất trong khoảng thời gian 3 giây đầu là bao nhiêu m/s?Lời giảiTrả lời: 4 $\Rightarrow {f}'\left( t \right)=-3{{t}^{2}}+6t=0\Leftrightarrow \left[ \begin{array}{l} … [Đọc thêm...] vềMột vật chuyển động với vận tốc $\left( m/s \right)$ được xác định bởi hàm số $f(t)=-{{t}^{3}}+3{{t}^{2}}$ với $t\ge 0$

Một cửa hàng cà phê bán cà phê espresso, nhận thấy rằng lợi nhuận của cửa hàng $y$ (tính theo đơn vị triệu đồng/ngày) phụ thuộc vào giá bán $x$ (chục nghìn đồng) mỗi ly espresso

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Cuc tri VDC - Trả lời ngắn

Một cửa hàng cà phê bán cà phê espresso, nhận thấy rằng lợi nhuận của cửa hàng $y$ (tính theo đơn vị triệu đồng/ngày) phụ thuộc vào giá bán $x$ (chục nghìn đồng) mỗi ly espresso. Qua khảo sát, cửa hàng mô tả lợi nhuận theo hàm số sau: $y=-2{{x}^{4}}+36{{x}^{2}}-90$. Hỏi cửa hàng nên chọn mức giá mỗi ly là bao nhiêu nghìn đồng để lợi nhuận tối ưu nhất?Lời giảiTrả lời: 30Ta có … [Đọc thêm...] vềMột cửa hàng cà phê bán cà phê espresso, nhận thấy rằng lợi nhuận của cửa hàng $y$ (tính theo đơn vị triệu đồng/ngày) phụ thuộc vào giá bán $x$ (chục nghìn đồng) mỗi ly espresso

Một vật chuyển động theo quy luật $s=-\dfrac{1}{2}{{t}^{3}}+6{{t}^{2}}$ với $t$ là khoảng thời gian tính từ khi vật đó bắt đầu chuyển động và $s\left( \text{m} \right)$ là quãng đường vật di chuyển được trong khoảng thời gian đó

Ngày 18/11/2025 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Cuc tri VDC - Trả lời ngắn

Một vật chuyển động theo quy luật $s=-\dfrac{1}{2}{{t}^{3}}+6{{t}^{2}}$ với $t$ là khoảng thời gian tính từ khi vật đó bắt đầu chuyển động và $s\left( \text{m} \right)$ là quãng đường vật di chuyển được trong khoảng thời gian đó. Hỏi trong khoảng thời gian $6$ giây, kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được … [Đọc thêm...] vềMột vật chuyển động theo quy luật $s=-\dfrac{1}{2}{{t}^{3}}+6{{t}^{2}}$ với $t$ là khoảng thời gian tính từ khi vật đó bắt đầu chuyển động và $s\left( \text{m} \right)$ là quãng đường vật di chuyển được trong khoảng thời gian đó

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.