==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, tìm các số thực m, n sao cho đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 - t\\z = - 2 - 2t\end{array} \right.\) nằm trong mặt phẳng \(\left( P \right):\left( {m + 4} \right)x - y + \left( {n - 2} \right)z + 5 = 0.\) A. \(m = - 2;n = \frac{9}{2}.\) B. \(m = 6;n = … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, tìm các số thực m, n sao cho đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 – t\\z = – 2 – 2t\end{array} \right.\) nằm trong mặt phẳng \(\left( P \right):\left( {m + 4} \right)x – y + \left( {n – 2} \right)z + 5 = 0.\)
Kết quả tìm kiếm cho: ty so
Đề: Một hình nón có thiết diện qua trục là một tam giác đều cạnh a. Gọi thể tích của khối cầu ngoại tiếp và khối cầu nội tiếp hình nón lần lượt là \({V_1},{V_2}\) . Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)
Câu hỏi: Một hình nón có thiết diện qua trục là một tam giác đều cạnh a. Gọi thể tích của khối cầu ngoại tiếp và khối cầu nội tiếp hình nón lần lượt là \({V_1},{V_2}\) . Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\) A. 2 B. 4 C. 8 D. 27 Hãy chọn trả lời đúng trước khi xem đáp án và lời … [Đọc thêm...] vềĐề: Một hình nón có thiết diện qua trục là một tam giác đều cạnh a. Gọi thể tích của khối cầu ngoại tiếp và khối cầu nội tiếp hình nón lần lượt là \({V_1},{V_2}\) . Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)
Đề: Gọi \(V_1\) là thể tích giữa khối lập phương và \(V_2\) là thể tích khối cầu ngoại tiếp khối lập phương đó. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)
Câu hỏi: Gọi \(V_1\) là thể tích giữa khối lập phương và \(V_2\) là thể tích khối cầu ngoại tiếp khối lập phương đó. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\) A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{3\pi }}{{2\sqrt 3 }}.\) B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{\pi \sqrt 2 }}{3}.\) C. \(\frac{{{V_1}}}{{{V_2}}} = … [Đọc thêm...] vềĐề: Gọi \(V_1\) là thể tích giữa khối lập phương và \(V_2\) là thể tích khối cầu ngoại tiếp khối lập phương đó. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)
Đề: Có một hộp nhựa hình lập phương người ta bỏ vào hộp đó 1 quả bóng đá. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}},\) trong đó V1 là tổng thế tích của quả bóng đá, V2 là thể tích của chiếc hộp đựng bóng. Biết rằng đường tròn lớn trên quả bóng có thể nội tiếp bốn mặt hình vuông của chiếc hộp.
Câu hỏi: Có một hộp nhựa hình lập phương người ta bỏ vào hộp đó 1 quả bóng đá. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}},\) trong đó V1 là tổng thế tích của quả bóng đá, V2 là thể tích của chiếc hộp đựng bóng. Biết rằng đường tròn lớn trên quả bóng có thể nội tiếp bốn mặt hình vuông của chiếc hộp. A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{\pi … [Đọc thêm...] vềĐề: Có một hộp nhựa hình lập phương người ta bỏ vào hộp đó 1 quả bóng đá. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}},\) trong đó V1 là tổng thế tích của quả bóng đá, V2 là thể tích của chiếc hộp đựng bóng. Biết rằng đường tròn lớn trên quả bóng có thể nội tiếp bốn mặt hình vuông của chiếc hộp.
Cho mặt cầu \(\left( S \right)\) có bán kính R. Một hình nón \(\left( N \right)\) có chiều cao \(x\left( {0 < x < 2R} \right)\) nội tiếp trong hình cầu \(\left( S \right).\) Gọi \({V_S},{V_N}\) lần lượt là thể tích của khối cầu \(\left( S \right)\) và khối nón \(\left( N \right).\) Giá trị lớn nhất của tỉ số \(\frac{{{V_N}}}{{{V_S}}}\) bằng bao nhiêu?
Câu hỏi: Cho mặt cầu \(\left( S \right)\) có bán kính R. Một hình nón \(\left( N \right)\) có chiều cao \(x\left( {0 < x < 2R} \right)\) nội tiếp trong hình cầu \(\left( S \right).\) Gọi \({V_S},{V_N}\) lần lượt là thể tích của khối cầu \(\left( S \right)\) và khối nón \(\left( N \right).\) Giá trị lớn nhất của tỉ số \(\frac{{{V_N}}}{{{V_S}}}\) bằng bao nhiêu? A. … [Đọc thêm...] vềCho mặt cầu \(\left( S \right)\) có bán kính R. Một hình nón \(\left( N \right)\) có chiều cao \(x\left( {0 < x < 2R} \right)\) nội tiếp trong hình cầu \(\left( S \right).\) Gọi \({V_S},{V_N}\) lần lượt là thể tích của khối cầu \(\left( S \right)\) và khối nón \(\left( N \right).\) Giá trị lớn nhất của tỉ số \(\frac{{{V_N}}}{{{V_S}}}\) bằng bao nhiêu?
Đề: Một khối cầu có thể tích V đi qua đỉnh và đường tròn đáy của một hình nón có thiết diện qua trục là một tam giác đều. Tính tỉ số thể tích của phần khối cầu nằm ngoài khối nón (V1) và thể tích khối nón (V2).
Câu hỏi: Một khối cầu có thể tích V đi qua đỉnh và đường tròn đáy của một hình nón có thiết diện qua trục là một tam giác đều. Tính tỉ số thể tích của phần khối cầu nằm ngoài khối nón (V1) và thể tích khối nón (V2). A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{9}{{32}}\) B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{23}}{9}\) C. … [Đọc thêm...] vềĐề: Một khối cầu có thể tích V đi qua đỉnh và đường tròn đáy của một hình nón có thiết diện qua trục là một tam giác đều. Tính tỉ số thể tích của phần khối cầu nằm ngoài khối nón (V1) và thể tích khối nón (V2).
Đề: Một chiếc ly hình nón chứa đầy rượu. Người ta uống đi một phần rượu sao cho chiều cao phần rượu còn lại bằng một nửa chiều cao ban đầu. Số phần rượu được uống là:
Câu hỏi: Một chiếc ly hình nón chứa đầy rượu. Người ta uống đi một phần rượu sao cho chiều cao phần rượu còn lại bằng một nửa chiều cao ban đầu. Số phần rượu được uống là: A. \(\frac{7}{8}\) B. \(\frac{1}{2}\) C. \(\frac{3}{4}\) D. \(\frac{2}{3}\) Hãy chọn trả lời đúng trước khi … [Đọc thêm...] vềĐề: Một chiếc ly hình nón chứa đầy rượu. Người ta uống đi một phần rượu sao cho chiều cao phần rượu còn lại bằng một nửa chiều cao ban đầu. Số phần rượu được uống là:
Đề: Cho lăng trụ đứng ABC.A’B’C’ có tam giác ABC vuông tại A, BC = 6, AA’ = 8. Xét mặt cầu ngoại tiếp lăng trụ và một hình trụ có hai đáy ngoại tiếp hai tam giác ABC và A’B’C’. Tỉ số thể tích của khối cầu và khối trụ bằng:
Câu hỏi: Cho lăng trụ đứng ABC.A’B’C’ có tam giác ABC vuông tại A, BC = 6, AA’ = 8. Xét mặt cầu ngoại tiếp lăng trụ và một hình trụ có hai đáy ngoại tiếp hai tam giác ABC và A’B’C’. Tỉ số thể tích của khối cầu và khối trụ bằng: A. \(\frac{{25}}{{72}}\) B. \(\frac{{125}}{{27}}\) C. … [Đọc thêm...] vềĐề: Cho lăng trụ đứng ABC.A’B’C’ có tam giác ABC vuông tại A, BC = 6, AA’ = 8. Xét mặt cầu ngoại tiếp lăng trụ và một hình trụ có hai đáy ngoại tiếp hai tam giác ABC và A’B’C’. Tỉ số thể tích của khối cầu và khối trụ bằng:
Đề: Một chiếc xô hình nón cụt đựng hóa chất ở phòng thí nghiệm có chiều cao 20 cm, đường kính hai đáy lần lượt là 10cm và 20 cm. Cô giáo giao cho bạn An sơn mặt ngoài của xô (trừ đáy). Tính diện tích bạn An phải sơn (làm tròn đến hai chữ số sau dấu phẩy)
Câu hỏi: Một chiếc xô hình nón cụt đựng hóa chất ở phòng thí nghiệm có chiều cao 20 cm, đường kính hai đáy lần lượt là 10cm và 20 cm. Cô giáo giao cho bạn An sơn mặt ngoài của xô (trừ đáy). Tính diện tích bạn An phải sơn (làm tròn đến hai chữ số sau dấu phẩy) A. 1942,97 \(c{m^2}\) B. 561,25 \(c{m^2}\) C. … [Đọc thêm...] vềĐề: Một chiếc xô hình nón cụt đựng hóa chất ở phòng thí nghiệm có chiều cao 20 cm, đường kính hai đáy lần lượt là 10cm và 20 cm. Cô giáo giao cho bạn An sơn mặt ngoài của xô (trừ đáy). Tính diện tích bạn An phải sơn (làm tròn đến hai chữ số sau dấu phẩy)
Đề: Một hình nón đỉnh S, đáy hình tròn tâm O và \(SO = h.\) Một mặt phẳng (P) qua đỉnh S cắt đường tròn (O) theo dây cung AB sao cho \(\widehat {AOB} = {90^o},\) biết khoảng cách từ O đến (P) bằng \(\frac{h}{2}.\) Khi đó diện tích xung quanh của hình nón bằng:
Câu hỏi: Một hình nón đỉnh S, đáy hình tròn tâm O và \(SO = h.\) Một mặt phẳng (P) qua đỉnh S cắt đường tròn (O) theo dây cung AB sao cho \(\widehat {AOB} = {90^o},\) biết khoảng cách từ O đến (P) bằng \(\frac{h}{2}.\) Khi đó diện tích xung quanh của hình nón bằng: A. \(\frac{{\pi {h^2}\sqrt {10} }}{6}.\) B. \(\frac{{\pi … [Đọc thêm...] vềĐề: Một hình nón đỉnh S, đáy hình tròn tâm O và \(SO = h.\) Một mặt phẳng (P) qua đỉnh S cắt đường tròn (O) theo dây cung AB sao cho \(\widehat {AOB} = {90^o},\) biết khoảng cách từ O đến (P) bằng \(\frac{h}{2}.\) Khi đó diện tích xung quanh của hình nón bằng: