==== Câu hỏi: Mặt phẳng \((\alpha )\) đi qua M (0; 0; -1) và song song với giá của hai vectơ \(\overrightarrow a = (1; - 2;3){\rm{ ; }}\overrightarrow b = (3;0;5)\) . Viết phương trình của mặt phẳng \((\alpha )\). A. 5x-2y-3z-21=0 B. -5x+2y+3z+3=0 C. 10x-4y-6z+21=0 D. … [Đọc thêm...] vềĐề: Mặt phẳng \((\alpha )\) đi qua M (0; 0; -1) và song song với giá của hai vectơ \(\overrightarrow a = (1; – 2;3){\rm{ ; }}\overrightarrow b = (3;0;5)\) . Viết phương trình của mặt phẳng \((\alpha )\).
Kết quả tìm kiếm cho: ty so
Đề: Trong không gian Oxyz, tìm vectơ pháp tuyến của mặt phẳng song song với hai đường thẳng \({\Delta _1}:\frac{{x – 2}}{2} = \frac{{y + 1}}{{ – 3}} = \frac{z}{4};{\Delta _2}:\left\{ \begin{array}{l} x = 2 + t\\ y = 3 + 2t\\ z = 1 – t \end{array} \right.\)
==== Câu hỏi: Trong không gian Oxyz, tìm vectơ pháp tuyến của mặt phẳng song song với hai đường thẳng \({\Delta _1}:\frac{{x - 2}}{2} = \frac{{y + 1}}{{ - 3}} = \frac{z}{4};{\Delta _2}:\left\{ \begin{array}{l} x = 2 + t\\ y = 3 + 2t\\ z = 1 - t \end{array} \right.\) A. \(\overrightarrow n = ( - 5;6; - 7)\) B. \(\overrightarrow n … [Đọc thêm...] vềĐề: Trong không gian Oxyz, tìm vectơ pháp tuyến của mặt phẳng song song với hai đường thẳng \({\Delta _1}:\frac{{x – 2}}{2} = \frac{{y + 1}}{{ – 3}} = \frac{z}{4};{\Delta _2}:\left\{ \begin{array}{l} x = 2 + t\\ y = 3 + 2t\\ z = 1 – t \end{array} \right.\)
Đề: Có bao nhiêu mặt phẳng song song với mặt phẳng \(\left( \alpha \right):x + y + z = 0\) đồng thời tiếp xúc với mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2{\rm{x}} – 2y – 2{\rm{z}} = 0?\)
==== Câu hỏi: Có bao nhiêu mặt phẳng song song với mặt phẳng \(\left( \alpha \right):x + y + z = 0\) đồng thời tiếp xúc với mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x}} - 2y - 2{\rm{z}} = 0?\) A. 1 B. 0 C. Vô số. D. 2 Hãy chọn trả lời đúng trước khi xem đáp án … [Đọc thêm...] vềĐề: Có bao nhiêu mặt phẳng song song với mặt phẳng \(\left( \alpha \right):x + y + z = 0\) đồng thời tiếp xúc với mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2{\rm{x}} – 2y – 2{\rm{z}} = 0?\)
Đề: Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng \(\left( \alpha \right):x + y – z + 1 = 0\) và \(\left( \beta \right): – 2{\rm{x}} + my + 2{\rm{z}} – 2 = 0.\) Tìm m để \(\left( \alpha \right)\) song song với \(\left( \beta \right).\)
==== Câu hỏi: Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng \(\left( \alpha \right):x + y - z + 1 = 0\) và \(\left( \beta \right): - 2{\rm{x}} + my + 2{\rm{z}} - 2 = 0.\) Tìm m để \(\left( \alpha \right)\) song song với \(\left( \beta \right).\) A. \(m = 2.\) B. \(m = 5.\) C. Không tồn … [Đọc thêm...] vềĐề: Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng \(\left( \alpha \right):x + y – z + 1 = 0\) và \(\left( \beta \right): – 2{\rm{x}} + my + 2{\rm{z}} – 2 = 0.\) Tìm m để \(\left( \alpha \right)\) song song với \(\left( \beta \right).\)
Đề: Trong không gian với hệ trục tọa độ Oxyz, gọi d là đường thẳng đi qua \(A\left( {1; – 1;2} \right)\), song song với mp \(\left( P \right):2x – y – z + 3 = 0\), đồng thời tạo với đường thẳng \(\Delta :\frac{{x + 1}}{1} = \frac{{y – 1}}{{ – 2}} = \frac{z}{2}\) một góc bé nhất. Phương trình của đường thẳng d là:
==== Câu hỏi: Trong không gian với hệ trục tọa độ Oxyz, gọi d là đường thẳng đi qua \(A\left( {1; - 1;2} \right)\), song song với mp \(\left( P \right):2x - y - z + 3 = 0\), đồng thời tạo với đường thẳng \(\Delta :\frac{{x + 1}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{z}{2}\) một góc bé nhất. Phương trình của đường thẳng d là: A. \(\frac{{x - 1}}{4} … [Đọc thêm...] vềĐề: Trong không gian với hệ trục tọa độ Oxyz, gọi d là đường thẳng đi qua \(A\left( {1; – 1;2} \right)\), song song với mp \(\left( P \right):2x – y – z + 3 = 0\), đồng thời tạo với đường thẳng \(\Delta :\frac{{x + 1}}{1} = \frac{{y – 1}}{{ – 2}} = \frac{z}{2}\) một góc bé nhất. Phương trình của đường thẳng d là:
Đề: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để đường thẳng \(d:\frac{x}{2} = \frac{y}{{ – 1}} = \frac{{z – m}}{{ – 1}}\)song song với mặt phẳng \(\left( P \right):4x + 4y + {m^2}z – 8 = 0\,\)
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để đường thẳng \(d:\frac{x}{2} = \frac{y}{{ - 1}} = \frac{{z - m}}{{ - 1}}\)song song với mặt phẳng \(\left( P \right):4x + 4y + {m^2}z - 8 = 0\,\) A. \(m = \pm 2\) B. \(m = 2\) C. \(m = - 2\) D. Không … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để đường thẳng \(d:\frac{x}{2} = \frac{y}{{ – 1}} = \frac{{z – m}}{{ – 1}}\)song song với mặt phẳng \(\left( P \right):4x + 4y + {m^2}z – 8 = 0\,\)
Đề: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình \({x^2} + {y^2} + {z^2} – 2mx + 2\left( {m – 2} \right)y – 2\left( {m + 3} \right)z + 8m + 37 = 0\) là phương trình của một mặt cầu.
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình \({x^2} + {y^2} + {z^2} - 2mx + 2\left( {m - 2} \right)y - 2\left( {m + 3} \right)z + 8m + 37 = 0\) là phương trình của một mặt cầu. A. \(m \le - 2{\rm{ }}hay{\rm{ }}m \ge 4\) B. \(m - 2\) C. \(m 4\) … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình \({x^2} + {y^2} + {z^2} – 2mx + 2\left( {m – 2} \right)y – 2\left( {m + 3} \right)z + 8m + 37 = 0\) là phương trình của một mặt cầu.
Đề: Trong không gian với hệ trục tọa độ Oxyz, gọi d là đường thẳng đi qua \(A\left( {1; – 1;2} \right)\), song song với mp \(\left( P \right):2x – y – z + 3 = 0\), đồng thời tạo với đường thẳng \(\Delta :\frac{{x + 1}}{1} = \frac{{y – 1}}{{ – 2}} = \frac{z}{2}\) một góc bé nhất. Phương trình của đường thẳng d là:
==== Câu hỏi: Trong không gian với hệ trục tọa độ Oxyz, gọi d là đường thẳng đi qua \(A\left( {1; - 1;2} \right)\), song song với mp \(\left( P \right):2x - y - z + 3 = 0\), đồng thời tạo với đường thẳng \(\Delta :\frac{{x + 1}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{z}{2}\) một góc bé nhất. Phương trình của đường thẳng d là: A. \(\frac{{x - 1}}{4} … [Đọc thêm...] vềĐề: Trong không gian với hệ trục tọa độ Oxyz, gọi d là đường thẳng đi qua \(A\left( {1; – 1;2} \right)\), song song với mp \(\left( P \right):2x – y – z + 3 = 0\), đồng thời tạo với đường thẳng \(\Delta :\frac{{x + 1}}{1} = \frac{{y – 1}}{{ – 2}} = \frac{z}{2}\) một góc bé nhất. Phương trình của đường thẳng d là:
Đề: Cho đường thẳng \(d:\frac{{x – 3}}{1} = \frac{{y – 3}}{3} = \frac{z}{2}\), mặt phẳng \((\alpha ):x + y – z + 3 = 0\) và điểm A(1; 2; -1). Viết phương trình đường thẳng \(\Delta \) đi qua A cắt d và song song với mp \((\alpha ).\)
==== Câu hỏi: Cho đường thẳng \(d:\frac{{x - 3}}{1} = \frac{{y - 3}}{3} = \frac{z}{2}\), mặt phẳng \((\alpha ):x + y - z + 3 = 0\) và điểm A(1; 2; -1). Viết phương trình đường thẳng \(\Delta \) đi qua A cắt d và song song với mp \((\alpha ).\) A. \(\frac{{x - 1}}{{ - 1}} = \frac{{y - 2}}{{ - 2}} = \frac{{z + 1}}{1}\) B. … [Đọc thêm...] vềĐề: Cho đường thẳng \(d:\frac{{x – 3}}{1} = \frac{{y – 3}}{3} = \frac{z}{2}\), mặt phẳng \((\alpha ):x + y – z + 3 = 0\) và điểm A(1; 2; -1). Viết phương trình đường thẳng \(\Delta \) đi qua A cắt d và song song với mp \((\alpha ).\)
Đề: Mặt phẳng song song với hai đường thẳng \({\Delta _1}:\frac{{x – 2}}{2} = \frac{{y + 1}}{{ – 3}} = \frac{z}{4}\) và \({\Delta _2}:\frac{{x – 2}}{1} = \frac{{y – 3}}{2} = \frac{{z – 1}}{{ – 1}}\) có vectơ pháp tuyến là:
==== Câu hỏi: Mặt phẳng song song với hai đường thẳng \({\Delta _1}:\frac{{x - 2}}{2} = \frac{{y + 1}}{{ - 3}} = \frac{z}{4}\) và \({\Delta _2}:\frac{{x - 2}}{1} = \frac{{y - 3}}{2} = \frac{{z - 1}}{{ - 1}}\) có vectơ pháp tuyến là: A. \(\overrightarrow n = (5; - 6;7)\) B. \(\overrightarrow n = ( - 5;6; - 7)\) … [Đọc thêm...] vềĐề: Mặt phẳng song song với hai đường thẳng \({\Delta _1}:\frac{{x – 2}}{2} = \frac{{y + 1}}{{ – 3}} = \frac{z}{4}\) và \({\Delta _2}:\frac{{x – 2}}{1} = \frac{{y – 3}}{2} = \frac{{z – 1}}{{ – 1}}\) có vectơ pháp tuyến là: