• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Kết quả tìm kiếm cho: dơ số 4 và số 2

Tự học Bài Phép tịnh tiến – Toán 11

Ngày 15/03/2020 Thuộc chủ đề:Toán lớp 11 Tag với:Phép tịnh tiến

Tự học Phép tịnh tiến - Hình học 11 - Toán 11 Tóm tắt lý thuyết. Các ví dụ về các dạng toán Tuyển tập các câu trắc nghiệm có lời giải. Biên tập: pdf Nguyễn Chín Em. Cắt và biên tập trên web: Admin Booktoan.com ============ ============ DOWNLOAD HERE file pdf -------------- … [Đọc thêm...] vềTự học Bài Phép tịnh tiến – Toán 11

Đề: Cho biểu thức $P$ = \(\cos A + \cos B + \cos C\). Trong đó $A, B, C$ là các góc của tam giác $ABC$ bất kì. Chứng minh rằng $P$ đạt giá trị lớn nhất nhưng không đạt giá trị nhỏ nhất.

Ngày 12/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Đề bài: Cho biểu thức $P$ = \(\cos A + \cos B + \cos C\). Trong đó $A, B, C$ là các góc của tam giác $ABC$ bất kì. Chứng minh rằng $P$ đạt giá trị lớn nhất nhưng không đạt giá trị nhỏ nhất. Lời giải $P=$ \(\cos A + \cos B + \cos C = 2\cos \frac{{A + B}}{2}c{\rm{os}}\frac{{A - B}}{2} + 1 - 2{\sin ^2}\frac{C}{2}\)    \(= 1 + 2\sin \frac{C}{2}c{\rm{os}}\frac{{A - B}}{2} + 1 - … [Đọc thêm...] vềĐề: Cho biểu thức $P$ = \(\cos A + \cos B + \cos C\). Trong đó $A, B, C$ là các góc của tam giác $ABC$ bất kì. Chứng minh rằng $P$ đạt giá trị lớn nhất nhưng không đạt giá trị nhỏ nhất.

Tự học Bài Xác suất của biến cố – Toán 11

Ngày 03/03/2020 Thuộc chủ đề:Toán lớp 11 Tag với:Xác suất

Bài học về Tự học Một số phương trình lượng giác thường gặp - Toán 11 Tóm tắt lý thuyết. Các ví dụ về các dạng toán Tuyển tập các câu trắc nghiệm có lời giải. Biên tập: pdf Nguyễn Chín Em. Cắt và biên tập trên web: Admin Booktoan.com ============ ============ DOWNLOAD HERE file … [Đọc thêm...] vềTự học Bài Xác suất của biến cố – Toán 11

Tìm GTLN-GTNN của tích phân

Ngày 11/02/2020 Thuộc chủ đề:Toán lớp 12 Tag với:Tích phân hàm ẩn

Vấn đề 13. Tìm GTLN-GTNN của tích phân. ============== Câu 103 Cho hàm số $f(x)$ liên tục trên $\mathbb{R},$ có đạo hàm cấp hai thỏa mãn $x \cdot f''(x) \geq \mathrm{e}^x+x$ và $f'(2)=2\mathrm{e}, f(0)=\mathrm{e}^2$. Mệnh đề nào sau đây là đúng? Các phương án chọn từ trên xuống là A B C D $f(2) \leq 4\mathrm{e}-1$ $f(2) \leq 2\mathrm{e}+\mathrm{e}^2$ $f(2) \leq … [Đọc thêm...] vềTìm GTLN-GTNN của tích phân

Tích phân hàm ẩn bằng Kỹ thuật đánh giá AM-GM

Ngày 11/02/2020 Thuộc chủ đề:Toán lớp 12 Tag với:Tích phân hàm ẩn

Tích phân hàm ẩn bằng Kỹ thuật đánh giá AM-GM ============== Vấn đề 12. Kỹ thuật đánh giá AM-GM. ============== Câu 98 Cho hàm số $f(x)$ nhận giá trị dương và có đạo hàm $f'(x)$ liên tục trên $[0; 1],$ thỏa mãn $f(1)=ef(0)$ và $\displaystyle\int\limits_0^1 \dfrac{\mathrm{\,d}x}{f^2(x)}+\displaystyle\int\limits_0^1 \left[f'(x)\right]^2\mathrm{\,d}x \leq 2$. Mệnh đề nào … [Đọc thêm...] vềTích phân hàm ẩn bằng Kỹ thuật đánh giá AM-GM

Tích phân hàm ẩn bằng Kỹ thuật đưa về bình phương loại 1

Ngày 11/02/2020 Thuộc chủ đề:Toán lớp 12 Tag với:Tích phân hàm ẩn

Tích phân hàm ẩn bằng Kỹ thuật đưa về bình phương loại 1 ======== Vấn đề 10. Kỹ thuật đưa về bình phương loại 1. ============== Câu 71 Cho hàm số $f(x)$ liên tục trên $\left[0; \dfrac{\pi}{2}\right],$ thỏa $\displaystyle\int\limits_0^{\tfrac{\pi}{2}} \left[f^2(x)-2\sqrt{2}f(x)\sin \left(x-\dfrac{\pi}{4}\right)\right]\mathrm{d}x=\dfrac{2-\pi}{2}$. Tính tích phân … [Đọc thêm...] vềTích phân hàm ẩn bằng Kỹ thuật đưa về bình phương loại 1

Tích phân hàm ẩn bằng Kỹ thuật đạo hàm đúng

Ngày 11/02/2020 Thuộc chủ đề:Toán lớp 12 Tag với:Tích phân hàm ẩn

Tích phân hàm ẩn bằng Kỹ thuật đạo hàm đúng =========== Vấn đề 9. Kỹ thuật đạo hàm đúng. ============== Câu 66 Cho hàm số $f(x)$ có đạo hàm liên tục trên $[0; 1],$ thoả mãn $3f(x)+xf'(x)=x^{2018}$ với mọi $x \in [0; 1]$. Tính $I=\displaystyle\int\limits_0^1 f(x)\mathrm{\,d}x$. Các phương án chọn từ trên xuống là A B C D $I=\dfrac{1}{2018\times … [Đọc thêm...] vềTích phân hàm ẩn bằng Kỹ thuật đạo hàm đúng

Tích phân hàm ẩn bằng Kỹ thuật biến đổi

Ngày 10/02/2020 Thuộc chủ đề:Toán lớp 12 Tag với:Tích phân hàm ẩn

Vấn đề 8. Kỹ thuật biến đổi. Tích phân hàm ẩn bằng Kỹ thuật biến đổi ============== Câu 46 Cho hàm số $f(x)$ thỏa $f(x)f'(x)=3x^5+6x^2$. Biết rằng $f(0)=2,$ tính$f^2(2)$. Các phương án chọn từ trên xuống là A B C D $f^2(2)=64$ $f^2(2)=81$ $f^2(2)=100$ $f^2(2)=144$ Lời Giải: Từ giả thiết ta có $\displaystyle\int\limits f(x) \cdot … [Đọc thêm...] vềTích phân hàm ẩn bằng Kỹ thuật biến đổi

Tính tích phân bằng Kỹ thuật phương trình hàm (VDC)

Ngày 10/02/2020 Thuộc chủ đề:Toán lớp 12 Tag với:Tích phân hàm ẩn

Tính tích phân bằng Kỹ thuật phương trình hàm (VDC) ========= Vấn đề 7. Kỹ thuật phương trình hàm. ============== Câu 41 Cho hàm số $y=f(x)$ liên tục trên $\left[-\dfrac{\pi}{2}; \dfrac{\pi}{2}\right]$ và thỏa mãn $2f(x)+f(-x)=\cos x$. Tính tích phân $I=\displaystyle\int\limits_{-\tfrac{\pi}{2}}^{\tfrac{\pi}{2}} f(x)\mathrm{\,d}x$. Các phương án chọn từ trên xuống là A … [Đọc thêm...] vềTính tích phân bằng Kỹ thuật phương trình hàm (VDC)

Tính tích phân hàm phân nhánh (VDC)

Ngày 10/02/2020 Thuộc chủ đề:Toán lớp 12 Tag với:Tích phân hàm ẩn

Vấn đề 5. Tính tích phân hàm phân nhánh. ============== Câu 31 Cho hàm số $f(x)=\begin{cases}&x+1 \qquad khi \qquad x \geq 0\\&\mathrm{e}^{2x} \qquad khi \qquad x \leq 0\end{cases}$. Tính tích phân $I=\displaystyle\int\limits_{-1}^2 f(x)\mathrm{\,d}x$. Các phương án chọn từ trên xuống là A B C … [Đọc thêm...] vềTính tích phân hàm phân nhánh (VDC)

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 522
  • Trang 523
  • Trang 524
  • Trang 525
  • Trang 526
  • Interim pages omitted …
  • Trang 539
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.