• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải sách bài tập toán 7 - Cánh diều / Giải SBT bài 2 Quan hệ giữa góc và cạnh đối diện, bất đẳng thức tam giác – Chương 7 SBT Toán 7 Cánh diều

Giải SBT bài 2 Quan hệ giữa góc và cạnh đối diện, bất đẳng thức tam giác – Chương 7 SBT Toán 7 Cánh diều

Ngày 12/03/2023 Thuộc chủ đề:Giải sách bài tập toán 7 - Cánh diều Tag với:Giai SBT Toan 7 Chuong 7 – CD

GIẢI CHI TIẾT Giải SBT bài 2 Quan hệ giữa góc và cạnh đối diện, bất đẳng thức tam giác – Chương 7 SBT Toán 7 Cánh diều

================

Giải bài 12 trang 70 SBT Toán 7 Cánh diều tập 2 – CD

Cho tam giác ABC có \(\hat A = 3\hat B = 6\hat C\).

a) Tìm số đo góc lớn nhất, góc bé nhất của tam giác ABC.

b) Kẻ AD vuông góc với BC tại D. Chứng minh AD < BD.

Hướng dẫn giải chi tiết Bài 12

Phương pháp giải

– Áp dụng tính chất dãy tỉ số bằng nhau để tính số dô các góc.

– Áp dụng mỗi quan hệ giữa góc và cạnh đối diện để chưng minh AD < BD

Lời giải chi tiết

Giải SBT bài 2 Quan hệ giữa góc và cạnh đối diện, bất đẳng thức tam giác - Chương 7 SBT Toán 7 Cánh diều 1

a) Từ \(\hat A = 3\hat B = 6\hat C\) suy ra: \(\frac{{\hat A}}{6} = \frac{{\hat B}}{2} = \frac{{\hat C}}{1}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{{\hat A}}{6} = \frac{{\hat B}}{2} = \frac{{\hat C}}{1} = \frac{{\hat A + \hat B + \hat C}}{{6 + 2 + 1}} = \frac{{180^\circ }}{9} = 20^\circ \)

Suy ra

• \(\hat A = 20^\circ .6 = 120^\circ ;\)

• \(\hat B = 20^\circ .2 = 40^\circ ;\)

• \(\hat C = 20^\circ .1 = 20^\circ .\)

Vậy trong tam giác ABC, số đo góc lớn nhất là \(\widehat {{A^{}}} = 120^\circ \), số đo góc bé nhất là \(\hat C = 20^\circ \)

b) Xét ∆ABD vuông tại D ta có:

\({\hat A_1} + \hat B = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Mà \(\hat B = 40^\circ \) (câu a)

Suy ra \({\hat A_1} = 90^\circ  – \hat B = 90^\circ  – 40^\circ  = 50^\circ \).

Trong ∆ADB có: \({\hat A_1} > \hat B\) (do 50° > 40°).

Suy ra BD > AD (trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn).

Vậy AD < BD. 

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 2

Giải bài 13 trang 70 SBT Toán 7 Cánh diều tập 2 – CD

Cho tam giác ABC có góc A tù. Trên cạnh AC lấy điểm D và E (D nằm giữa A và E). Chứng minh BA < BD < BE < BC.

Hướng dẫn giải chi tiết Bài 13

Phương pháp giải

Áp dụng mối quan hệ giữa góc và cạnh đối diện để chứng minh BA < BD < BE < BC.

Lời giải chi tiết

Giải SBT bài 2 Quan hệ giữa góc và cạnh đối diện, bất đẳng thức tam giác - Chương 7 SBT Toán 7 Cánh diều 2

• Xét tam giác ABD có \(\widehat {{A^{}}}\) là góc tù.

Nên BA < BD (trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất) (1)

•Vì \(\widehat {B{\rm{D}}E}\) là góc ngoài của tam giác ADB tại đỉnh D \(\widehat {BDE} = \hat A + \widehat {ABD}\).

Mà \(\widehat {{A^{}}}\) là góc tù.

Do đó \(\widehat {B{\rm{D}}E}\) là góc tù.

Xét tam giác EBD có \(\widehat {B{\rm{D}}E}\) là góc tù .

Nên BD < BE (trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất) (2)

•Vì \(\widehat {BEC}\) là góc ngoài của tam giác AEB tại đỉnh E nên \(\widehat {BEC} = \hat A + \widehat {ABE}\)

 Mà \(\widehat {{A^{}}}\)là góc tù.

Do đó \(\widehat {BEC}\) là góc tù.

Xét tam giác EBC có \(\widehat {BEC}\) là góc tù.

Nên BE < BC (trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất) (3)

Từ (1), (2) và (3) suy ra BA < BD < BE < BC.

Vậy BA < BD < BE < BC.

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 2

Giải bài 14 trang 70 SBT Toán 7 Cánh diều tập 2 – CD

a) Cho tam giác ABC có AB = 15 cm, BC = 8 cm. Tính độ dài cạnh AC, biết độ dài của nó (theo đơn vị xăng-ti-mét) là một số nguyên tố lớn hơn bình phương của 4.

b) Độ dài ba cạnh của tam giác MNP tỉ lệ với 2; 3; 4. Tính độ dài cạnh lớn nhất, biết tổng độ dài hai cạnh là 20 cm.

Hướng dẫn giải chi tiết bài 14

Phương pháp giải

– Áp dụng bất đằng thức tam giác để tìm độ dài cạnh AC.

– Áp dụng tính chất dãy tỉ số bằng nhau trong đọ dài ba cạnh tam giác MNP để tìm độ dài cạnh lớn nhất của tam giác.

Lời giải chi tiết

a) Áp dụng bất đẳng thức tam giác cho tam giác ABC ta có:

AB – BC < AC < AB + BC

Hay 15 – 8 < AC < 15 + 8

Suy ra 7 < AC < 23.

Độ dài cạnh AC là một số nguyên tố lớn hơn bình phương của 4 tức là AC > 42 = 16 và AC là số nguyên tố.

Do đó AC = 17 cm hoặc AC = 19 cm.

Vậy AC = 17 cm hoặc AC = 19 cm.

b) Gọi độ dài ba cạnh của tam giác MNP là m, n, p với\(0{\rm{ }} < {\rm{ }}m{\rm{ }} \le {\rm{ }}n{\rm{ }} \le {\rm{ }}p.\)

Độ dài ba cạnh của tam giác MNP tỉ lệ với 2; 3; 4 nên ta có:

\(\frac{m}{2} = \frac{n}{3} = \frac{p}{4}\)

Mặt khác tổng độ dài hai cạnh là 20 cm nên \(m{\rm{ }} + {\rm{ }}n{\rm{ }} = {\rm{ }}20{\rm{ }}\left( {cm} \right).\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{m}{2} = \frac{n}{3} = \frac{p}{4} = \frac{{m + n}}{{2 + 3}} = \frac{{20}}{5} = 4\)

Suy ra\({\rm{ }}p{\rm{ }} = {\rm{ }}4{\rm{ }}.{\rm{ }}4{\rm{ }} = {\rm{ }}16{\rm{ }}\left( {cm} \right).\)

Vậy độ dài cạnh lớn nhất của tam giác MNP là 16 cm.

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 2

Giải bài 15 trang 71 SBT Toán 7 Cánh diều tập 2 – CD

Cho tam giác ABC có AB < AC, AD là tia phân giác của \(\widehat {BAD}\) (D ∈ BC). Chứng minh \(\widehat {ADB} < \widehat {ADC}\) .

Hướng dẫn giải chi tiết Bài 15

Phương pháp giải

Áp dụng quan hệ giữa góc và cạnh đối diện và tổng ba góc trong một tam giác để chứng minh \(\widehat {ADB} < \widehat {ADC}\) 

Lời giải chi tiết

Giải SBT bài 2 Quan hệ giữa góc và cạnh đối diện, bất đẳng thức tam giác - Chương 7 SBT Toán 7 Cánh diều 3

Xét tam giác ABC có AB < AC (giả thiết)

Suy ra \(\hat C < \hat B\) (trong một tam giác, góc đối diện với cạnh lớn hơn là góc lớn hơn).

Vì AD là tia phân giác của góc BAC nên \({\widehat {{A^{}}}_1} = {\widehat {{A^{}}}_2}\)

 Xét ∆ABD có: \({\widehat {{A^{}}}_1} + \widehat B + \widehat {ADB} = 180^\circ \) (tổng ba góc của một tam giác).

Suy ra \(\widehat {A{\rm{D}}B} = 180^\circ  – \widehat {{A_1}^{}} – \widehat B\) (1)

Xét ∆ACD có: \(\widehat {{A_2}^{}} + \widehat C + \widehat {A{\rm{D}}C} = 180^\circ \) (tổng ba góc của một tam giác).

Suy ra \(\widehat {A{\rm{D}}C} = {180^o} – \widehat {{A_2}^{}} – \widehat C\) (2)

Mà \(\widehat {{A_1}} = \widehat {{A_2}}\) (chứng minh trên) và \(\widehat B > \widehat C\) (chứng minh trên) (3)

Từ (1), (2) và (3) ta có \(\widehat {A{\rm{D}}B} < \widehat {A{\rm{D}}C}\)

Vậy \(\widehat {A{\rm{D}}B} < \widehat {A{\rm{D}}C}\)

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 2

Giải bài 16 trang 71 SBT Toán 7 Cánh diều tập 2 – CD

Cho tam giác ABC có \(\widehat {A{}^{}} = {110^o}\) và \(\widehat B = \widehat C\). Trên cạnh BC lấy điểm D sao cho \(\widehat {A{\rm{D}}C} = {105^o}\). Từ C kẻ đường thẳng song song với AD cắt tia BA tại E. Chứng minh:

a) AE < CE;

b) EC < BC < BE.

Hướng dẫn giải chi tiết Bài 16

Phương pháp giải

– Áp dụng quan hệ giữa góc và cạnh đối diện trong tam giác ACE để chúng minh

 AE < CE.

– Áp dụng mối quan hệ giữa góc và cạnh đối diện trong tam giác BEC để chứng minh

EC < BC < BE. 

Lời giải chi tiết

Giải SBT bài 2 Quan hệ giữa góc và cạnh đối diện, bất đẳng thức tam giác - Chương 7 SBT Toán 7 Cánh diều 4

•Xét ∆ACB có: \(\widehat {BAC} + \widehat {BCA} + \hat B = 180^\circ \) (tổng ba góc của một tam giác)

Mà \(\widehat {BAC} = 110^\circ ,\)\(\widehat B = \widehat {ACB}\) (giả thiết)

Suy ra \(\hat B = \widehat {ACB} = \frac{{180^\circ  – \widehat {BAC}}}{2} = \frac{{180^\circ  – 110^\circ }}{2} = 35^\circ \)

 •Ta có \(\widehat {BAC} + \widehat {CAE} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {CAE} = 180^\circ  – \widehat {BAC} = 180^\circ  – 110^\circ  = 70^\circ \) .

• Do AD // EC (giả thiết) nên \(\widehat {ADC} + \widehat {ECD} = {180^o}\) (hai góc trong cùng phía).

Suy ra \(\widehat {ECD} = {180^o} – \widehat {ADC} = {180^o} – {105^o} = {75^o}.\)

 Lại có \(\widehat {ACB} + \widehat {ACE} = \widehat {ECD}\) (hai góc kề nhau)

Do đó \(\widehat {ACE} = \widehat {ECD} – \widehat {ACB} = 75^\circ  – {35^o} = 40^\circ .\)

 • Trong ∆ACE có: \(\widehat {ACE} < \widehat {CAE}\) (do 40° < 70°)

Do đó AE < CE (trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn).

Vậy AE < CE.

b) Xét ∆EBC có: \(\hat E + \widehat {BCE} + \hat B = 180^\circ \) (tổng ba góc của một tam giác)

Mà \(\widehat {BCE} = 75^\circ ,\hat B = 35^\circ \)

Suy ra  \(\hat E = 180^\circ  – \hat B – \widehat {BCE} = 180^\circ  – 35^\circ  – 75^\circ  = 70^\circ \)

Trong tam giác BCE có: \(\hat B < \hat E < \widehat {BCE}\) (do 35° < 70° < 75°).

Nên EC < BC < BE (trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn).

Vậy EC < BC < BE.

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 2

Giải bài 17 trang 71 SBT Toán 7 Cánh diều tập 2 – CD

Cho tam giác ABC, điểm D nằm giữa hai điểm B và C. Chứng minh AD nhỏ hơn nửa chu vi của tam giác ABC.

Hướng dẫn giải chi tiết Bài 17

Phương pháp giải

Áp dụng bất đẳng thức tam giác trong tam giác ABC để chứng minh \(A{\rm{D}} < \frac{{AB + AC + BC}}{2}\)

Lời giải chi tiết

Giải SBT bài 2 Quan hệ giữa góc và cạnh đối diện, bất đẳng thức tam giác - Chương 7 SBT Toán 7 Cánh diều 5

Xét ∆ABD có: AD < AB + BD (bất đẳng thức tam giác) (1)

Xét ∆ACD có AD < AC + DC (bất đẳng thức tam giác) (2)

Cộng theo vế của (1) và (2) ta có:

AD + AD < AB + BD + AC + DC

2AD < AB + AC + (BD + DC)

2AD < AB +AC +BC

Suy ra: \(A{\rm{D}} < \frac{{AB + AC + BC}}{2}\)

Mà\(\frac{{AB + AC + BC}}{2}\)  là chu vi của tam giác ABC.

Vậy AD luôn nhỏ hơn nửa chu vi của tam giác ABC.

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 2

Giải bài 18 trang 71 SBT Toán 7 Cánh diều tập 2 – CD

Chứng minh rằng trong một tam giác, độ dài cạnh lớn nhất sẽ lớn hơn hoặc bằng \(\frac{1}{3}\)chu vi của tam giác nhưng nhỏ hơn nửa chu vi của tam giác đó.

Hướng dẫn giải chi tiết bài 18

Phương pháp giải

Gọi độ dài 3 cạnh của tam giác là a, b, c với \(a \ge b \ge c\)

Áp dụng bất đẳng thức tam giác để chứng minh \(\frac{{a + b + c}}{3} \le a \le \frac{{a + b + c}}{2}\)

Lời giải chi tiết

Giả sử độ dài ba cạnh của tam giác là a, b, c với a ≥ b ≥ c > 0.

Theo bất đẳng thức tam giác ta có a < b + c.

Suy ra a + a < a + b + c.

Hay \(a < \frac{{a + b + c}}{2}\) (1)

Vì a ≥ b, a ≥ c nên a + a + a ≥ a + b + c.

Hay 3a ≥ a + b + c.

Do đó \(a \ge \frac{{a + b + c}}{3}\) (2)

Từ (1) và (2) suy ra: \(\frac{{a + b + c}}{3} \le a \le \frac{{a + b + c}}{2}\)

Mà chu vi của tam giác này là a + b + c.

Vậy trong một tam giác, độ dài cạnh lớn nhất sẽ lớn hơn hoặc bằng \(\frac{1}{3}\) chu vi của tam giác nhưng nhỏ hơn nửa chu vi của tam giác đó. 

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 2

=============

Bài liên quan:

  1. Giải SBT bài 5 – Chương 7 SBT Toán 7 Cánh diều
  2. Giải SBT bài 6 Trường hợp bằng nhau thứ ba của tam giác góc – cạnh – góc – Chương 7 SBT Toán 7 Cánh diều
  3. Giải SBT bài 7 Tam giác cân – Chương 7 SBT Toán 7 Cánh diều
  4. Giải SBT bài 8 Đường vuông góc và đường xiên – Chương 7 SBT Toán 7 Cánh diều
  5. Giải SBT bài 9 Đường trung trực của một đoạn thẳng – Chương 7 SBT Toán 7 Cánh diều
  6. Giải SBT bài 10 Tính chất ba đường trung tuyến của tam giác – Chương 7 SBT Toán 7 Cánh diều
  7. Giải SBT bài 11 Tính chất ba đường phân giác của tam giác – Chương 7 SBT Toán 7 Cánh diều
  8. Giải SBT bài 12 Tính chất ba đường trung trực của tam giác – Chương 7 SBT Toán 7 Cánh diều
  9. Giải SBT bài 13 Tính chất ba đường cao của tam giác – Chương 7 SBT Toán 7 Cánh diều
  10. Giải SBT bài cuối chương VII trang 119 – Chương 7 SBT Toán 7 Cánh diều
  11. Giải SBT bài 1 – Chương 7 SBT Toán 7 Cánh diều
  12. Giải SBT bài 3 Hai tam giác bằng nhau – Chương 7 SBT Toán 7 Cánh diều
  13. Giải SBT bài 4 Trường hợp bằng nhau thứ nhất của tam giác cạnh – cạnh – cạnh – Chương 7 SBT Toán 7 Cánh diều

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập sách bài tập (SBT) Toán 7 – Cánh diều

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.