• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải sách bài tập toán 7 - Cánh diều / Giải SBT bài 6 Trường hợp bằng nhau thứ ba của tam giác góc – cạnh – góc – Chương 7 SBT Toán 7 Cánh diều

Giải SBT bài 6 Trường hợp bằng nhau thứ ba của tam giác góc – cạnh – góc – Chương 7 SBT Toán 7 Cánh diều

Ngày 12/03/2023 Thuộc chủ đề:Giải sách bài tập toán 7 - Cánh diều Tag với:Giai SBT Toan 7 Chuong 7 – CD

GIẢI CHI TIẾT Giải SBT bài 6 Trường hợp bằng nhau thứ ba của tam giác góc – cạnh – góc – Chương 7 SBT Toán 7 Cánh diều

================

Giải bài 37 trang 81 SBT Toán 7 Cánh diều tập 2 – CD

Nêu thêm một điều kiện để hai tam giác trong mỗi hình 31a, 31b, 31c, 31d là hai tam giác bằng nhau theo trường hợp góc – cạnh – góc.

Giải SBT bài 6 Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc - Chương 7 SBT Toán 7 Cánh diều 1

a) ∆CAB = ∆DBA (Hình 31a).

b) ∆NRQ = ∆RNP (Hình 31b).

c) ∆OAC = ∆OBD (Hình 31c).

d) ∆SRQ = ∆IKH (Hình 31d).

Hướng dẫn giải chi tiết Bài 37

Phương pháp giải

Quan sát các hình để thêm các điều biện bằng nhau của tam giác theo trường hợp goc – cạnh – góc

Lời giải chi tiết

a) Hình a

Để ∆CAB = ∆DBA theo trường hợp góc – cạnh – góc thì một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia.

Mà hai tam giác trên có cạnh AB là cạnh chung và \(\widehat {CAB} = \widehat {DBA}\left( { = 90^\circ } \right)\).

Mặt khác, trong ∆CAB thì cạnh AB có hai góc kề là \(\widehat {CAB}\) và \(\widehat {ABC}\);

Trong ∆DBA thì cạnh AB có hai góc kề là \(\widehat {DBA}\) và \(\widehat {BAD}\) .

Do đó điều kiện còn lại là điều kiện về góc, đó là \(\widehat {ABC} = \widehat {BAD}\)

Vậy Hình 31a cần thêm điều kiện \(\widehat {ABC} = \widehat {BAD}\) .

b) Hình b

Để ∆NRQ = ∆RNP theo trường hợp góc – cạnh – góc thì một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia.

Mà hai tam giác trên có cạnh NR là cạnh chung và \(\widehat {PN{\rm{R}}} = \widehat {{\rm{QRN}}}\left( { = 40^\circ } \right)\).

Mặt khác, trong ∆NRQ, cạnh NR có hai góc kề là \(\widehat {PNR}\) và \(\widehat {PRN}\) ;

Trong ∆RNP, cạnh NR có hai góc kề là \(\widehat {QRN}\) và \(\widehat {QNR}\)

Do đó điều kiện còn lại là điều kiện về góc, đó là \(\widehat {PRN} = \widehat {QNR}.\)

 Vậy Hình 31b cần thêm điều kiện \(\widehat {PRN} = \widehat {QNR}.\).

c) Hình c

Để ∆OAC = ∆OBD theo trường hợp góc – cạnh – góc thì một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia.

Mà hai tam giác trên có OA = OB và \(\hat O\) là góc chung.

Mặt khác, trong ∆OAC, cạnh OA có hai góc kề là \(\hat O\) và \(\widehat {OAC}\);

Trong ∆OBD, cạnh OB có hai góc kề là \(\hat O\) và \(\widehat {OBD}\) .

Do đó điều kiện còn lại là điều kiện về góc, đó là \(\widehat {OAC} = \widehat {OBD}\).

Vậy Hình 31c cần thêm điều kiện \(\widehat {OAC} = \widehat {OBD}\).

d) Hình d

Để ∆SRQ = ∆IKH theo trường hợp góc – cạnh – góc thì một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia.

Mà hai tam giác này có \(\hat Q = \hat H\left( { = 50^\circ } \right)\) và \(\hat S = \hat I\left( { = 100^\circ } \right)\)

Mặt khác, trong ∆SRQ, \(\hat Q\) và \(\hat S\) là hai góc kề của cạnh QS;

Trong ∆IKH, \(\hat H\) và \(\hat I\) là hai góc kề của cạnh HI.

Do đó điều kiện còn lại là điều kiện về cạnh, đó là QS = HI.

Vậy Hình 31d cần thêm điều kiện QS = HI.

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 6

Giải bài 38 trang 81 SBT Toán 7 Cánh diều tập 2 – CD

Cho ∆ABC = ∆A’B’C’. Vẽ AH vuông góc với BC tại H, A’H’ vuông góc với B’C’ tại H’. Chứng minh AH = A’H’.

Hướng dẫn giải chi tiết Bài 38

Phương pháp giải

– Chứng minh: \(\Delta ABH = \Delta A’B’H’\) (cạnh huyền – góc nhọn)

– Suy ra: AH = A’H’.

Lời giải chi tiết

Giải SBT bài 6 Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc - Chương 7 SBT Toán 7 Cánh diều 2

Do ∆ABC = ∆A’B’C’ (giả thiết)

Nên AB = A’B’ (hai cạnh tương ứng) và (hai góc tương ứng).

Xét ∆ABH và ∆AB’H’ có:

\(\widehat {AHB} = \widehat {A’H’B’}\left( { = 90^\circ } \right)\)

AB = A’B’ (chứng minh trên),

\(\widehat {ABH} = \widehat {A’B’H’}\) (do \(\widehat {ABC} = \widehat {A’B’C’}\))

Suy ra ∆ABH = ∆A’B’H’ (cạnh huyền – góc nhọn).

Do đó AH = A’H’ (hai cạnh tương ứng).

Vậy AH = A’H’.

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 6

Giải bài 39 trang 81 SBT Toán 7 Cánh diều tập 2 – CD

Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Vẽ CM vuông góc với AB tại M, BN vuông góc với AC tại N. Chứng minh AM = AN.

Hướng dẫn giải chi tiết Bài 39

Phương pháp giải

– Chứng minh \(\Delta A{\rm{D}}B = \Delta A{\rm{D}}C(c – c – c)\) suy ra \(\widehat {ABC} = \widehat {ACB}\) hay \(\widehat {MB{\rm{D}}} = \widehat {NC{\rm{D}}}\)

– Chứng minh \(\Delta BNC = \Delta CMB\) (cạnh huyền – góc nhọn) suy ra: AB = AC và BM = CN hay

AM = AN

Lời giải chi tiết

Giải SBT bài 6 Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc - Chương 7 SBT Toán 7 Cánh diều 3

Xét ∆ABD và ∆ACD có:

AB = AC (giả thiết),

BD = CD (do D là trung điểm của BC),

AD là cạnh chung

Do đó ∆ABD = ∆ACD (c.c.c).

Suy ra \(\widehat {ABD} = \widehat {ACD}\) hay \(\widehat {MBC} = \widehat {NCB}\).

Xét ∆BMC và ∆CNB có:

\(\widehat {BMC} = \widehat {CNB}\left( { = 90^\circ } \right)\)

BC là cạnh chung,

\(\widehat {MBC} = \widehat {NCB}\) (chứng minh trên),

Do đó ∆BMC và ∆CNB (cạnh huyền – góc nhọn).

Suy ra BM = CN (hai cạnh tương ứng).

Ta có AB = AM + MB, AC = AN + NC.

Mà AB = AC, BM = CN.

Suy ra AM = AN.

Vậy AM = AN.

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 6

Giải bài 40 trang 81 SBT Toán 7 Cánh diều tập 2 – CD

Cho Hình 32 có \(\widehat {BAC} = 90^\circ \), AH vuông góc với BC tại H, \(\widehat {xAB} = \widehat {BAH}\) , Ay là tia đối của tia Ax. BD và CE vuông góc với xy lần lượt tại D và E. Chứng minh:

a) AC là tia phân giác của góc Hay;

b) BD + CE = BC;

c) DH vuông góc với HE.

Giải SBT bài 6 Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc - Chương 7 SBT Toán 7 Cánh diều 4

Hướng dẫn giải chi tiết Bài 40

Phương pháp giải

– Chứng minh \(\widehat {CAH} = \widehat {CAy}\) suy ra AC là tía phân giác của \(\widehat {HAy}\).

– Chứng minh: ∆ABD = ∆ABH (cạnh huyền – góc nhọn) suy ra BD = BA

Tương tự chứng minh: CH = CE

Từ đó: BC = BH + CH

Mà BD = BH, CE = CH.

Do đó BC = BD + CE.

– Gọi I là giao điểm của AB và DH

Chứng minh ∆ADI = ∆AHI (c.g.c) suy ra \(\widehat {ADI} = \widehat {AHI}\)

Tương tự chứng minh: \(\widehat {AHE} = \widehat {AEH}\)

Tính số đo góc HDE bằng \({90^o}\) nên DH vuông góc với HE

Lời giải chi tiết

a) •Ta có \(\widehat {xAy} = \widehat {xAB} + \widehat {BAC} + \widehat {CAy}\)

Hay \(180^\circ  = \widehat {xAB} + 90^\circ  + \widehat {CAy}\)

Suy ra \(\widehat {CAy} = 90^\circ  – \widehat {xAB}\)

•Ta có \(\widehat {BAH} + \widehat {CAH} = \widehat {BAC} = 90^\circ \)

Nên \(\widehat {CAH} = 90^\circ  – \widehat {BAH}\)

Mà \(\widehat {xAB} = \widehat {BAH}\) (giả thiết)

Suy ra \(\widehat {CAH} = \widehat {CAy}\)

Do đó AC là tia phân giác của \(\widehat {HAy}\)

Vậy AC là tia phân giác của \(\widehat {HAy}\) .

b) • Xét ∆ABD và ∆ABH có:

\(\widehat {ADB} = \widehat {AHB}\left( { = 90^\circ } \right)\)

AB là cạnh chung,

\(\widehat {DAB} = \widehat {HAB}\) (giả thiết),

Do đó ∆ABD = ∆ABH (cạnh huyền – góc nhọn).

Suy ra BD = BH , AD = AH (các cặp cạnh tương ứng).

• Xét ∆ACE và ∆ACH có:

\(\widehat {AEC} = \widehat {AHC}\left( { = 90^\circ } \right)\)

AC là cạnh chung,

\(\widehat {CAH} = \widehat {CAE}\) (chứng minh câu a),

Do đó ∆ACE = ∆ACH (cạnh huyền – góc nhọn).

Suy ra CE = CH, AE = AH (các cặp cạnh tương ứng).

•Ta có BC = BH + CH

Mà BD = BH, CE = CH.

Do đó BC = BD + CE.

Vậy BC = BD + CE.

c) Gọi I là giao điểm của AB và DH, K là giao điểm của EH và AC.

• Xét ∆ADI và ∆AHI có:

AD = AH (chứng minh câu b),

\(\widehat {DAI} = \widehat {HAI}\) (do \(\widehat {xAB} = \widehat {BAH}\)),

AI là cạnh chung.

Do đó ∆ADI = ∆AHI (c.g.c).

Suy ra \(\widehat {ADI} = \widehat {AHI}\) (hai góc tương ứng).

Hay \(\widehat {ADH} = \widehat {AHD}\).

• Xét ∆AHK và ∆AEK có:

AH = AE (chứng minh câu b),

\(\widehat {HAK} = \widehat {EAK}\) (do \(\widehat {HAC} = \widehat {EAC}\)),

AK là cạnh chung

Do đó ∆AHK = ∆AEK (c.g.c)

Suy ra \(\widehat {AHK} = \widehat {AEK}\) (hai góc tương ứng).

 

Hay \(\widehat {AHE} = \widehat {AEH}\).

Xét ∆ADH có: \(\widehat {ADH} + \widehat {AHD} + \widehat {HAD} = 180^\circ \) (tổng ba góc của một tam giác).

Mà \(\widehat {ADH} = \widehat {AHD}\) nên \(\widehat {AHD} = \frac{{180^\circ  – \widehat {HAD}}}{2}\)

 Xét ∆AEH có: \(\widehat {AEH} + \widehat {AHE} + \widehat {HAE} = 180^\circ \) (tổng ba góc của một tam giác)

Mà \(\widehat {AHE} = \widehat {AEH}\) nên \(\widehat {AHE} = \frac{{180^\circ  – \widehat {HAE}}}{2}\)

Ta có

\(\widehat {DHE} = \widehat {AHD} + \widehat {AHE} = \frac{{180^\circ  – \widehat {HAD}}}{2} + \frac{{180^\circ  – \widehat {HAE}}}{2} = \frac{{{{360}^o} – \left( {\widehat {HA{\rm{D}}} + \widehat {HA{\rm{E}}}} \right)}}{2} = \frac{{{{360}^o} – {{180}^o}}}{2} = {90^o}\)

Suy ra DH vuông góc với  HE.

Vậy DH vuông góc với  HE.

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 6

Giải bài 41 trang 81 SBT Toán 7 Cánh diều tập 2 – CD

Cho tam giác ABC có ba góc đều nhọn và ˆA=60°.A^=60°. Tia phân giác của góc ABC cắt AC tại D, tia phân giác của góc ACB cắt AB tại E. BD cắt CE tại I. Tia phân giác của góc BIC cắt BC tại F. Chứng minh:

a) \(\widehat {BIC} = 120^\circ \)

b) ∆BEI = ∆BFI;

c) BC = BE + CD.

Hướng dẫn giải chi tiết Bài 41

Phương pháp giải

– Dựa tính chất tia phân giác của một góc và tổng ba góc trong một tam giác để chứng minh \(\widehat {BIC} = 120^\circ \)

– Xét các điều kiện về cạnh, về góc để chứng minh ∆BEI = ∆BFI (g – c – g)

– Từ các tam giác bằng nhau suy ra các cạnh tương ứng bằng nhau dẫn tới chứng minh BC = BE + CD.

Lời giải chi tiết

Giải SBT bài 6 Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc - Chương 7 SBT Toán 7 Cánh diều 5

a) Vì BD là phân giác của góc ABC nên \(\widehat {ABD} = \widehat {CBD} = \frac{{\widehat {ABC}}}{2}\)

Vì CE là phân giác của góc ACB nên \(\widehat {ACE} = \widehat {ECB} = \frac{{\widehat {ACB}}}{2}\)

Xét ∆ABC có: \(\hat A + \widehat {ABC} + \widehat {ACB} = 180^\circ \) (tổng ba góc của một tam giác)

Suy ra\(\widehat {ABC} + \widehat {ACB} = 180^\circ  – \hat A = 180^\circ  – 60^\circ  = 120^\circ \)

Xét ∆IBC có: \(\widehat {BIC} + \widehat {IBC} + \widehat {ICB} = 180^\circ \) (tổng ba góc của một tam giác)

Hay \(\widehat {BIC} + \frac{{\widehat {ABC}}}{2} + \frac{{\widehat {ACB}}}{2} = 180^\circ \)

Suy ra \(\widehat {BIC} = 180^\circ  – \frac{{\widehat {ABC} + \widehat {ACB}}}{2} = 180^\circ  – \frac{{120^\circ }}{2} = 120^\circ \)

 Vậy \(\widehat {BIC} = 120^\circ .\)

b) Vì IF là phân giác của góc BIC nên \(\widehat {BIF} = \widehat {CIF} = \frac{{\widehat {BIC}}}{2} = \frac{{120^\circ }}{2} = 60^\circ \)

 Ta có \(\widehat {BIC} + \widehat {BIE} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {BIE} = 180^\circ  – \widehat {BIC} = 180^\circ  – 120^\circ  = 60^\circ \)

Xét ∆BEI và ∆BFI có:

\(\widehat {EBI} = \widehat {FBI}\) (chứng minh câu a),

BI là cạnh chung,

\(\widehat {EIB} = \widehat {FIB}\) (cùng bằng 60°),

Do đó ∆BEI = ∆BFI (g.c.g).

Vậy ∆BEI = ∆BFI.

c) Do ∆BEI = ∆BFI (câu b) nên BE = BF (hai cạnh tương ứng).

Ta có \(\widehat {BIC} + \widehat {CID} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {CID} = 180^\circ  – \widehat {BIC} = 180^\circ  – 120^\circ  = 60^\circ \)

Xét ∆CFI và ∆CDI có:

\(\widehat {FCI} = \widehat {DCI}\) (chứng minh câu a),

CI là cạnh chung,

\(\widehat {CIF} = \widehat {CID}\) (cùng bằng 60°),

Suy ra ∆CFI = ∆CDI (g.c.g).

Do đó CF = CD (hai cạnh tương ứng).

Ta có: BC = BF + FC = BE + CD.

Vậy BC = BE + CD.

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 6

Giải bài 42 trang 81 SBT Toán 7 Cánh diều tập 2 – CD

Cho tam giác ABC có \(\hat A = 90^\circ \), M là trung điểm của BC. Chứng minh BC = 2AM.

Giải SBT bài 6 Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc - Chương 7 SBT Toán 7 Cánh diều 6

Hướng dẫn giải chi tiết Bài 42

Phương pháp giải

– Chứng minh \(\Delta MBA = \Delta MCN(g – c – g)\)

Suy ra: AB = CN và AM = MN

– Chứng minh: \(\Delta BAC = \Delta NCA\) từ đó chứng minh được BC = 2AM

Lời giải chi tiết

Qua C kẻ đường thẳng d song song với AB, d cắt AM tại N.

Suy ra \(\widehat {ABC} = \widehat {BCN}\) (hai góc so le trong).

Ta có BA ⊥ AC, d // AB.

Suy ra d ⊥ AC hay \(\widehat {NCA} = 90^\circ \)

Xét ∆MBA và ∆MCN có:

BM = CM (vì M là trung điểm của BC),

\({\hat M_1} = {\hat M_2}\) (hai góc đối đỉnh),

\(\widehat {ABC} = \widehat {NCB}\) (chứng minh trên)

Do đó ∆MBA = ∆MCN (g.c.g).

Suy ra AB = CN và AM = NM (các cặp cạnh tương ứng).

Xét ∆BAC và ∆NCA có:

AC là cạnh chung,

\(\widehat {BAC} = \widehat {NCA}\) (cùng bằng 90o),

AB = NC (chứng minh trên)

Do đó ∆BAC = ∆NCA (c.g.c)

Suy ra BC = NA (hai cạnh tương ứng).

Mà AM = MN, AN = AM + MN = 2AM.

Nên BC = AN = 2AM.

Vậy 2AM = BC.

 

Giải bài tập Toán 7 Cánh diều Chương 7 Bài 6

=============

Bài liên quan:

  1. Giải SBT bài 5 – Chương 7 SBT Toán 7 Cánh diều
  2. Giải SBT bài 7 Tam giác cân – Chương 7 SBT Toán 7 Cánh diều
  3. Giải SBT bài 8 Đường vuông góc và đường xiên – Chương 7 SBT Toán 7 Cánh diều
  4. Giải SBT bài 9 Đường trung trực của một đoạn thẳng – Chương 7 SBT Toán 7 Cánh diều
  5. Giải SBT bài 10 Tính chất ba đường trung tuyến của tam giác – Chương 7 SBT Toán 7 Cánh diều
  6. Giải SBT bài 11 Tính chất ba đường phân giác của tam giác – Chương 7 SBT Toán 7 Cánh diều
  7. Giải SBT bài 12 Tính chất ba đường trung trực của tam giác – Chương 7 SBT Toán 7 Cánh diều
  8. Giải SBT bài 13 Tính chất ba đường cao của tam giác – Chương 7 SBT Toán 7 Cánh diều
  9. Giải SBT bài cuối chương VII trang 119 – Chương 7 SBT Toán 7 Cánh diều
  10. Giải SBT bài 1 – Chương 7 SBT Toán 7 Cánh diều
  11. Giải SBT bài 2 Quan hệ giữa góc và cạnh đối diện, bất đẳng thức tam giác – Chương 7 SBT Toán 7 Cánh diều
  12. Giải SBT bài 3 Hai tam giác bằng nhau – Chương 7 SBT Toán 7 Cánh diều
  13. Giải SBT bài 4 Trường hợp bằng nhau thứ nhất của tam giác cạnh – cạnh – cạnh – Chương 7 SBT Toán 7 Cánh diều

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập sách bài tập (SBT) Toán 7 – Cánh diều

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.